IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v259y2022ics0360544222019648.html
   My bibliography  Save this article

Modeling of aircraft performance parameters with metaheuristic methods to achieve specific excess power contours using energy maneuverability method

Author

Listed:
  • Oruc, Ridvan
  • Baklacioglu, Tolga

Abstract

The energy method, which deals with the total energy of the aircraft (sum of potential energy and kinetic energy), is frequently used in the climb analysis of high performance aircraft. Within the scope of this study, by using this energy approach; a new method is presented to obtain specific excess power contours (Ps), which show the performance limits of the aircraft, present the altitude and speed combinations at which they can fly at different specific excess powers, and help determine the trajectory corresponding to the minimum time to climb without the need for any mathematical operation. In the method presented for the B737-800 aircraft; aircraft performance model consisting of aerodynamic model, thrust, and fuel flow rate models was created and Ps contours implementing the energy maneuverability method were obtained by using this model. The data used in the study are real thrust and flight data record (FDR) data. For the models, the cuckoo search algorithm (CSA) method, which is relatively new but has proven itself in many challenging optimization problems, is used. Particle swarm optimization (PSO), a different metaheuristic method, was used to validate CSA models. In all of the optimization processes made using the Matlab program, very accurate results were accomplished with both metaheuristic methods.

Suggested Citation

  • Oruc, Ridvan & Baklacioglu, Tolga, 2022. "Modeling of aircraft performance parameters with metaheuristic methods to achieve specific excess power contours using energy maneuverability method," Energy, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:energy:v:259:y:2022:i:c:s0360544222019648
    DOI: 10.1016/j.energy.2022.125069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222019648
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Nu & Wang, Jianliang & Wu, Lifeng & Bentley, Yongmei, 2021. "Predicting monthly natural gas production in China using a novel grey seasonal model with particle swarm optimization," Energy, Elsevier, vol. 215(PA).
    2. Baklacioglu, Tolga & Aydin, Hakan & Turan, Onder, 2016. "Energetic and exergetic efficiency modeling of a cargo aircraft by a topology improving neuro-evolution algorithm," Energy, Elsevier, vol. 103(C), pages 630-645.
    3. Siddhartha, & Sharma, Naveen & Varun,, 2012. "A particle swarm optimization algorithm for optimization of thermal performance of a smooth flat plate solar air heater," Energy, Elsevier, vol. 38(1), pages 406-413.
    4. Basu, M. & Chowdhury, A., 2013. "Cuckoo search algorithm for economic dispatch," Energy, Elsevier, vol. 60(C), pages 99-108.
    5. Senthil Kumar, J. & Charles Raja, S. & Jeslin Drusila Nesamalar, J. & Venkatesh, P., 2018. "Optimizing renewable based generations in AC/DC microgrid system using hybrid Nelder-Mead – Cuckoo Search algorithm," Energy, Elsevier, vol. 158(C), pages 204-215.
    6. Meng, Xuejiao & Chang, Jianxia & Wang, Xuebin & Wang, Yimin, 2019. "Multi-objective hydropower station operation using an improved cuckoo search algorithm," Energy, Elsevier, vol. 168(C), pages 425-439.
    7. Perrigot, Antoine & Perier-Muzet, Maxime & Ortega, Pascal & Stitou, Driss, 2020. "Technical economic analysis of PV-driven electricity and cold cogeneration systems using particle swarm optimization algorithm," Energy, Elsevier, vol. 211(C).
    8. Xiao, Yi & Liu, John J. & Hu, Yi & Wang, Yingfeng & Lai, Kin Keung & Wang, Shouyang, 2014. "A neuro-fuzzy combination model based on singular spectrum analysis for air transport demand forecasting," Journal of Air Transport Management, Elsevier, vol. 39(C), pages 1-11.
    9. Walton, S. & Hassan, O. & Morgan, K. & Brown, M.R., 2011. "Modified cuckoo search: A new gradient free optimisation algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 44(9), pages 710-718.
    10. Aygun, Hakan & Turan, Onder, 2022. "Application of genetic algorithm in exergy and sustainability: A case of aero-gas turbine engine at cruise phase," Energy, Elsevier, vol. 238(PA).
    11. Jamili, Amin, 2017. "A robust mathematical model and heuristic algorithms for integrated aircraft routing and scheduling, with consideration of fleet assignment problem," Journal of Air Transport Management, Elsevier, vol. 58(C), pages 21-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oruc, Ridvan & Baklacioglu, Tolga, 2023. "Modeling of energy maneuverability based specific excess power contours for commercial aircraft using metaheuristic methods," Energy, Elsevier, vol. 269(C).
    2. Oruc, Ridvan & Baklacioglu, Tolga, 2024. "Cruise range modeling of different flight strategies for transport aircraft using genetic algorithms and particle swarm optimization," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oruc, Ridvan & Baklacioglu, Tolga, 2023. "Modeling of energy maneuverability based specific excess power contours for commercial aircraft using metaheuristic methods," Energy, Elsevier, vol. 269(C).
    2. Dang, Chaolei & Cheng, Kunlin & Fan, Junhao & Wang, Yilin & Qin, Jiang & Liu, Guodong, 2023. "Performance analysis of fuel vapor turbine and closed-Brayton-cycle combined power generation system for hypersonic vehicles," Energy, Elsevier, vol. 266(C).
    3. Oruc, Ridvan & Baklacioglu, Tolga, 2024. "Cruise range modeling of different flight strategies for transport aircraft using genetic algorithms and particle swarm optimization," Energy, Elsevier, vol. 294(C).
    4. Kim, Myeonghyeon & Choi, Yuri & Song, Ki Han, 2019. "Identification model development for proactive response on irregular operations (IROPs)," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 1-8.
    5. Afzal, Asif & Buradi, Abdulrajak & Jilte, Ravindra & Shaik, Saboor & Kaladgi, Abdul Razak & Arıcı, Muslum & Lee, Chew Tin & Nižetić, Sandro, 2023. "Optimizing the thermal performance of solar energy devices using meta-heuristic algorithms: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    6. Can, Özer & Baklacioglu, Tolga & Özturk, Erkan & Turan, Onder, 2022. "Artificial neural networks modeling of combustion parameters for a diesel engine fueled with biodiesel fuel," Energy, Elsevier, vol. 247(C).
    7. Kaloop, Mosbeh R. & Bardhan, Abidhan & Kardani, Navid & Samui, Pijush & Hu, Jong Wan & Ramzy, Ahmed, 2021. "Novel application of adaptive swarm intelligence techniques coupled with adaptive network-based fuzzy inference system in predicting photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    8. Jianzhong Xu & Fu Yan & Kumchol Yun & Lifei Su & Fengshu Li & Jun Guan, 2019. "Noninferior Solution Grey Wolf Optimizer with an Independent Local Search Mechanism for Solving Economic Load Dispatch Problems," Energies, MDPI, vol. 12(12), pages 1-26, June.
    9. Askarzadeh, Alireza, 2014. "Comparison of particle swarm optimization and other metaheuristics on electricity demand estimation: A case study of Iran," Energy, Elsevier, vol. 72(C), pages 484-491.
    10. Yi Xiao & Shouyang Wang & Ming Xiao & Jin Xiao & Yi Hu, 2017. "The Analysis for the Cargo Volume with Hybrid Discrete Wavelet Modeling," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(03), pages 851-863, May.
    11. Yang, Weixin & Pan, Lingying & Ding, Qinyi, 2023. "Dynamic analysis of natural gas substitution for crude oil: Scenario simulation and quantitative evaluation," Energy, Elsevier, vol. 282(C).
    12. Naz Yeti̇moğlu, Yücel & Selim Aktürk, M., 2021. "Aircraft and passenger recovery during an aircraft’s unexpected unavailability," Journal of Air Transport Management, Elsevier, vol. 91(C).
    13. Kirmizi, Mehmet & Aygun, Hakan & Turan, Onder, 2023. "Performance and energy analysis of turboprop engine for air freighter aircraft with the aid of multiple regression," Energy, Elsevier, vol. 283(C).
    14. Modiri-Delshad, Mostafa & Aghay Kaboli, S. Hr. & Taslimi-Renani, Ehsan & Rahim, Nasrudin Abd, 2016. "Backtracking search algorithm for solving economic dispatch problems with valve-point effects and multiple fuel options," Energy, Elsevier, vol. 116(P1), pages 637-649.
    15. Ari, Didem & Mizrak Ozfirat, Pinar, 2024. "Comparison of artificial neural networks and regression analysis for airway passenger estimation," Journal of Air Transport Management, Elsevier, vol. 115(C).
    16. Thang Trung Nguyen & Bach Hoang Dinh & Nguyen Vu Quynh & Minh Quan Duong & Le Van Dai, 2018. "A Novel Algorithm for Optimal Operation of Hydrothermal Power Systems under Considering the Constraints in Transmission Networks," Energies, MDPI, vol. 11(1), pages 1-21, January.
    17. Hopfe, David H. & Lee, Kiljae & Yu, Chunyan, 2024. "Short-term forecasting airport passenger flow during periods of volatility: Comparative investigation of time series vs. neural network models," Journal of Air Transport Management, Elsevier, vol. 115(C).
    18. Meng, Xuejiao & Chang, Jianxia & Wang, Xuebin & Wang, Yimin, 2019. "Multi-objective hydropower station operation using an improved cuckoo search algorithm," Energy, Elsevier, vol. 168(C), pages 425-439.
    19. Elsakaan, Asmaa A. & El-Sehiemy, Ragab A. & Kaddah, Sahar S. & Elsaid, Mohammed I., 2018. "An enhanced moth-flame optimizer for solving non-smooth economic dispatch problems with emissions," Energy, Elsevier, vol. 157(C), pages 1063-1078.
    20. Chen, Fei & Liu, Yang, 2022. "Model construction and performance investigation of multi-section compound parabolic concentrator with solar vacuum tube," Energy, Elsevier, vol. 250(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:259:y:2022:i:c:s0360544222019648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.