IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0149646.html
   My bibliography  Save this article

Copy Number Variants Associated with 14 Cases of Self-Injurious Behavior

Author

Listed:
  • Matthew D Shirley
  • Laurence Frelin
  • José Soria López
  • Anne Jedlicka
  • Amanda Dziedzic
  • Michelle A Frank-Crawford
  • Wayne Silverman
  • Louis Hagopian
  • Jonathan Pevsner

Abstract

Copy number variants (CNVs) were detected and analyzed in 14 probands with autism and intellectual disability with self-injurious behavior (SIB) resulting in tissue damage. For each proband we obtained a clinical history and detailed behavioral descriptions. Genetic anomalies were observed in all probands, and likely clinical significance could be established in four cases. This included two cases having novel, de novo copy number variants and two cases having variants likely to have functional significance. These cases included segmental trisomy 14, segmental monosomy 21, and variants predicted to disrupt the function of ZEB2 (encoding a transcription factor) and HTR2C (encoding a serotonin receptor). Our results identify variants in regions previously implicated in intellectual disability and suggest candidate genes that could contribute to the etiology of SIB.

Suggested Citation

  • Matthew D Shirley & Laurence Frelin & José Soria López & Anne Jedlicka & Amanda Dziedzic & Michelle A Frank-Crawford & Wayne Silverman & Louis Hagopian & Jonathan Pevsner, 2016. "Copy Number Variants Associated with 14 Cases of Self-Injurious Behavior," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-16, March.
  • Handle: RePEc:plo:pone00:0149646
    DOI: 10.1371/journal.pone.0149646
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0149646
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0149646&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0149646?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christian Gilissen & Jayne Y. Hehir-Kwa & Djie Tjwan Thung & Maartje van de Vorst & Bregje W. M. van Bon & Marjolein H. Willemsen & Michael Kwint & Irene M. Janssen & Alexander Hoischen & Annette Sche, 2014. "Genome sequencing identifies major causes of severe intellectual disability," Nature, Nature, vol. 511(7509), pages 344-347, July.
    2. Brian J. O’Roak & Laura Vives & Santhosh Girirajan & Emre Karakoc & Niklas Krumm & Bradley P. Coe & Roie Levy & Arthur Ko & Choli Lee & Joshua D. Smith & Emily H. Turner & Ian B. Stanaway & Benjamin V, 2012. "Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations," Nature, Nature, vol. 485(7397), pages 246-250, May.
    3. Eric L Stevens & Greg Heckenberg & Elisha D O Roberson & Joseph D Baugher & Thomas J Downey & Jonathan Pevsner, 2011. "Inference of Relationships in Population Data Using Identity-by-Descent and Identity-by-State," PLOS Genetics, Public Library of Science, vol. 7(9), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li Liu & Aniko Sabo & Benjamin M Neale & Uma Nagaswamy & Christine Stevens & Elaine Lim & Corneliu A Bodea & Donna Muzny & Jeffrey G Reid & Eric Banks & Hillary Coon & Mark DePristo & Huyen Dinh & Tim, 2013. "Analysis of Rare, Exonic Variation amongst Subjects with Autism Spectrum Disorders and Population Controls," PLOS Genetics, Public Library of Science, vol. 9(4), pages 1-15, April.
    2. Oscar Lao & Fan Liu & Andreas Wollstein & Manfred Kayser, 2014. "GAGA: A New Algorithm for Genomic Inference of Geographic Ancestry Reveals Fine Level Population Substructure in Europeans," PLOS Computational Biology, Public Library of Science, vol. 10(2), pages 1-11, February.
    3. Xiaolin Zhu & Raghavendra Padmanabhan & Brett Copeland & Joshua Bridgers & Zhong Ren & Sitharthan Kamalakaran & Ailbhe O'Driscoll-Collins & Samuel F Berkovic & Ingrid E Scheffer & Annapurna Poduri & D, 2017. "A case-control collapsing analysis identifies epilepsy genes implicated in trio sequencing studies focused on de novo mutations," PLOS Genetics, Public Library of Science, vol. 13(11), pages 1-12, November.
    4. Srirangan Sampath & Shambu Bhat & Simone Gupta & Ashley O’Connor & Andrew B West & Dan E Arking & Aravinda Chakravarti, 2013. "Defining the Contribution of CNTNAP2 to Autism Susceptibility," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-1, October.
    5. Idan Menashe & Pascal Grange & Eric C Larsen & Sharmila Banerjee-Basu & Partha P Mitra, 2013. "Co-expression Profiling of Autism Genes in the Mouse Brain," PLOS Computational Biology, Public Library of Science, vol. 9(7), pages 1-10, July.
    6. Dang Ton Nguyen & Hai Ha Nguyen & Thuy Duong Nguyen & Thi Thanh Hoa Nguyen & Kaoru Nakano & Kazuhiro Maejima & Aya Sasaki-Oku & Van Ba Nguyen & Duy Bac Nguyen & Bach Quang Le & Jing Hao Wong & Tatsuhi, 2018. "Whole Genome Sequencing of a Vietnamese Family from a Dioxin Contamination Hotspot Reveals Novel Variants in the Son with Undiagnosed Intellectual Disability," IJERPH, MDPI, vol. 15(12), pages 1-11, November.
    7. Tetsushi Sadakata & Yo Shinoda & Akira Sato & Hirotoshi Iguchi & Chiaki Ishii & Makoto Matsuo & Ryosuke Yamaga & Teiichi Furuichi, 2013. "Mouse Models of Mutations and Variations in Autism Spectrum Disorder-Associated Genes: Mice Expressing Caps2/Cadps2 Copy Number and Alternative Splicing Variants," IJERPH, MDPI, vol. 10(12), pages 1-19, November.
    8. Dragojlovic, Nick & Kopac, Nicola & Borle, Kennedy & Tandun, Rachel & Salmasi, Shahrzad & Ellis, Ursula & Birch, Patricia & Adam, Shelin & Friedman, Jan M. & Elliott, Alison M. & Lynd, Larry D., 2021. "Utilization and uptake of clinical genetics services in high-income countries: A scoping review," Health Policy, Elsevier, vol. 125(7), pages 877-887.
    9. Richard Newton & Lorenz Wernisch, 2019. "A meta-analysis of multiple matched aCGH/expression cancer datasets reveals regulatory relationships and pathway enrichment of potential oncogenes," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-28, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0149646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.