Time Series Modelling of Syphilis Incidence in China from 2005 to 2012
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0149401
Download full text from publisher
References listed on IDEAS
- Xingyu Zhang & Yuanyuan Liu & Min Yang & Tao Zhang & Alistair A Young & Xiaosong Li, 2013. "Comparative Study of Four Time Series Methods in Forecasting Typhoid Fever Incidence in China," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-11, May.
- Fong, Pak Wing & Li, Wai Keung, 2003. "On time series with randomized unit root and randomized seasonal unit root," Computational Statistics & Data Analysis, Elsevier, vol. 43(3), pages 369-395, July.
- Anne B. Koehler & Emily S. Murphree, 1988. "A Comparison of the Akaike and Schwarz Criteria for Selecting Model Order," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 37(2), pages 187-195, June.
- Xingyu Zhang & Tao Zhang & Alistair A Young & Xiaosong Li, 2014. "Applications and Comparisons of Four Time Series Models in Epidemiological Surveillance Data," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-16, February.
- Pai, Ping-Feng & Lin, Chih-Sheng, 2005. "A hybrid ARIMA and support vector machines model in stock price forecasting," Omega, Elsevier, vol. 33(6), pages 497-505, December.
- Galbraith, JohnW. & Zinde-Walsh, Victoria, 1999. "On the distributions of Augmented Dickey-Fuller statistics in processes with moving average components," Journal of Econometrics, Elsevier, vol. 93(1), pages 25-47, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rui Zhang & Hejia Song & Qiulan Chen & Yu Wang & Songwang Wang & Yonghong Li, 2022. "Comparison of ARIMA and LSTM for prediction of hemorrhagic fever at different time scales in China," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-14, January.
- Liping Zhang & Li Wang & Yanling Zheng & Kai Wang & Xueliang Zhang & Yujian Zheng, 2017. "Time Prediction Models for Echinococcosis Based on Gray System Theory and Epidemic Dynamics," IJERPH, MDPI, vol. 14(3), pages 1-14, March.
- Hadi Bagheri & Leili Tapak & Manoochehr Karami & Zahra Hosseinkhani & Hamidreza Najari & Safdar Karimi & Zahra Cheraghi, 2020. "Forecasting the monthly incidence rate of brucellosis in west of Iran using time series and data mining from 2010 to 2019," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-18, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Carlos Medel, 2017.
"Forecasting Chilean inflation with the hybrid new keynesian Phillips curve: globalisation, combination, and accuracy,"
Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 20(3), pages 004-050, December.
- Carlos Medel, 2016. "Forecasting Chilean Inflation with the Hybrid New Keynesian Phillips Curve: Globalisation, Combination, and Accuracy," Working Papers Central Bank of Chile 791, Central Bank of Chile.
- Medel, Carlos A., 2017. "Forecasting Chilean Inflation with the Hybrid New Keynesian Phillips Curve: Globalisation, Combination, and Accuracy," MPRA Paper 78439, University Library of Munich, Germany.
- Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
- Dimitrios Kartsonakis Mademlis & Nikolaos Dritsakis, 2021. "Volatility Forecasting using Hybrid GARCH Neural Network Models: The Case of the Italian Stock Market," International Journal of Economics and Financial Issues, Econjournals, vol. 11(1), pages 49-60.
- Carlos A. Medel, 2015.
"Probabilidad Clásica de Sobreajuste con Criterios de Información: Estimaciones con Series Macroeconómicas Chilenas,"
Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 30(1), pages 57-72, Abril.
- Carlos Medel, 2014. "Probabilidad Clásica de Sobreajuste con Criterios de Información: Estimaciones con Series Macroeconómicas Chilenas," Working Papers Central Bank of Chile 735, Central Bank of Chile.
- Medel, Carlos A., 2014. "Probabilidad Clásica de Sobreajuste con Criterios de Información: Estimaciones con Series Macroeconómicas Chilenas [Classical Probability of Overfitting with Information Criteria: Estimations with ," MPRA Paper 57401, University Library of Munich, Germany.
- Md. Abul Kalam Azad & Abu Reza Md. Towfiqul Islam & Md. Siddiqur Rahman & Kurratul Ayen, 2021. "Development of novel hybrid machine learning models for monthly thunderstorm frequency prediction over Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1109-1135, August.
- Politis, Dimitris, 2016. "HEGY test under seasonal heterogeneity," University of California at San Diego, Economics Working Paper Series qt2q4054kf, Department of Economics, UC San Diego.
- Nazarian, Rafik & Gandali Alikhani, Nadiya & Naderi, Esmaeil & Amiri, Ashkan, 2013. "Forecasting Stock Market Volatility: A Forecast Combination Approach," MPRA Paper 46786, University Library of Munich, Germany.
- Arghyrou, Michael G. & Gregoriou, Andros & Kontonikas, Alexandros, 2009.
"Do real interest rates converge? Evidence from the European union,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(3), pages 447-460, July.
- Michael G. Arghyrou & Andros Gregoriou & Alexandros Kontonikas, 2007. "Do real interest rates converge? Evidence from the European Union," Working Papers 2007_21, Business School - Economics, University of Glasgow.
- Arghyrou, Michael G & Gregoriou, Andros & Kontonikas, Alexandros, 2007. "Do real interest rates converge? Evidence from the European Union," Cardiff Economics Working Papers E2007/26, Cardiff University, Cardiff Business School, Economics Section.
- Zhu (Drew) Zhang & Jie Yuan & Amulya Gupta, 2024. "Let the Laser Beam Connect the Dots: Forecasting and Narrating Stock Market Volatility," INFORMS Journal on Computing, INFORMS, vol. 36(6), pages 1400-1416, December.
- Cheng, Ching-Hsue & Wei, Liang-Ying, 2014. "A novel time-series model based on empirical mode decomposition for forecasting TAIEX," Economic Modelling, Elsevier, vol. 36(C), pages 136-141.
- Gaetano Perone, 2020. "An ARIMA model to forecast the spread and the final size of COVID-2019 epidemic in Italy," Health, Econometrics and Data Group (HEDG) Working Papers 20/07, HEDG, c/o Department of Economics, University of York.
- Cenk Ufuk Yıldıran & Abdurrahman Fettahoğlu, 2017. "Forecasting USDTRY rate by ARIMA method," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1335968-133, January.
- Shangkun Deng & Kazuki Yoshiyama & Takashi Mitsubuchi & Akito Sakurai, 2015. "Hybrid Method of Multiple Kernel Learning and Genetic Algorithm for Forecasting Short-Term Foreign Exchange Rates," Computational Economics, Springer;Society for Computational Economics, vol. 45(1), pages 49-89, January.
- Carlos A. Medel, 2018.
"Forecasting Inflation with the Hybrid New Keynesian Phillips Curve: A Compact-Scale Global VAR Approach,"
International Economic Journal, Taylor & Francis Journals, vol. 32(3), pages 331-371, July.
- Medel, Carlos A., 2015. "Forecasting Inflation with the Hybrid New Keynesian Phillips Curve: A Compact-Scale Global VAR Approach," MPRA Paper 67081, University Library of Munich, Germany.
- Carlos Medel, 2016. "Forecasting Inflation with the Hybrid New Keynesian Phillips Curve: A Compact-Scale Global VAR Approach," Working Papers Central Bank of Chile 785, Central Bank of Chile.
- Mohammad Almasarweh & S. AL Wadi, 2018. "ARIMA Model in Predicting Banking Stock Market Data," Modern Applied Science, Canadian Center of Science and Education, vol. 12(11), pages 309-309, November.
- Adamantios Ntakaris & Martin Magris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2017. "Benchmark Dataset for Mid-Price Forecasting of Limit Order Book Data with Machine Learning Methods," Papers 1705.03233, arXiv.org, revised Mar 2020.
- Salehi Mahdi & Rostami Neda, 2013. "Bankruptcy Prediction By Using Support Vector Machines And Genetic Algorithms," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 8(1), pages 104-114, April.
- Klender Cortez & Martha del Pilar Rodríguez-García & Samuel Mongrut, 2020. "Exchange Market Liquidity Prediction with the K-Nearest Neighbor Approach: Crypto vs. Fiat Currencies," Mathematics, MDPI, vol. 9(1), pages 1-15, December.
- Manahov, Viktor & Hudson, Robert & Gebka, Bartosz, 2014. "Does high frequency trading affect technical analysis and market efficiency? And if so, how?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 28(C), pages 131-157.
- Zhang, H.S. & Shen, X.Y. & Huang, J.P., 2016. "Pattern of trends in stock markets as revealed by the renormalization method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 340-346.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0149401. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.