IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0232910.html
   My bibliography  Save this article

Forecasting the monthly incidence rate of brucellosis in west of Iran using time series and data mining from 2010 to 2019

Author

Listed:
  • Hadi Bagheri
  • Leili Tapak
  • Manoochehr Karami
  • Zahra Hosseinkhani
  • Hamidreza Najari
  • Safdar Karimi
  • Zahra Cheraghi

Abstract

Background: The identification of statistical models for the accurate forecast and timely determination of the outbreak of infectious diseases is very important for the healthcare system. Thus, this study was conducted to assess and compare the performance of four machine-learning methods in modeling and forecasting brucellosis time series data based on climatic parameters. Methods: In this cohort study, human brucellosis cases and climatic parameters were analyzed on a monthly basis for the Qazvin province–located in northwestern Iran- over a period of 9 years (2010–2018). The data were classified into two subsets of education (80%) and testing (20%). Artificial neural network methods (radial basis function and multilayer perceptron), support vector machine and random forest were fitted to each set. Performance analysis of the models were done using the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Root Error (MARE), and R2 criteria. Results: The incidence rate of the brucellosis in Qazvin province was 27.43 per 100,000 during 2010–2019. Based on our results, the values of the RMSE (0.22), MAE (0.175), MARE (0.007) criteria were smaller for the multilayer perceptron neural network than their values in the other three models. Moreover, the R2 (0.99) value was bigger in this model. Therefore, the multilayer perceptron neural network exhibited better performance in forecasting the studied data. The average wind speed and mean temperature were the most effective climatic parameters in the incidence of this disease. Conclusions: The multilayer perceptron neural network can be used as an effective method in detecting the behavioral trend of brucellosis over time. Nevertheless, further studies focusing on the application and comparison of these methods are needed to detect the most appropriate forecast method for this disease.

Suggested Citation

  • Hadi Bagheri & Leili Tapak & Manoochehr Karami & Zahra Hosseinkhani & Hamidreza Najari & Safdar Karimi & Zahra Cheraghi, 2020. "Forecasting the monthly incidence rate of brucellosis in west of Iran using time series and data mining from 2010 to 2019," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-18, May.
  • Handle: RePEc:plo:pone00:0232910
    DOI: 10.1371/journal.pone.0232910
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0232910
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0232910&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0232910?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xingyu Zhang & Tao Zhang & Alistair A Young & Xiaosong Li, 2014. "Applications and Comparisons of Four Time Series Models in Epidemiological Surveillance Data," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-16, February.
    2. Xingyu Zhang & Tao Zhang & Jiao Pei & Yuanyuan Liu & Xiaosong Li & Pau Medrano-Gracia, 2016. "Time Series Modelling of Syphilis Incidence in China from 2005 to 2012," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Zhenzhen & Ma, Xia & Zhang, Yongxin & Sun, Guiquan & Zhang, Zi-Ke, 2023. "Identifying critical driving factors for human brucellosis in Inner Mongolia, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jerelyn Co & Jason Allan Tan & Ma. Regina Justina Estuar & Kennedy Espina, 2017. "Dengue Spread Modeling in the Absence of Sufficient Epidemiological Parameters: Comparison of SARIMA and SVM Time Series Models," Working papers Conference proceedings The Future of Ethics, Education and Research, October 16-17, 2017 22, Research Association for Interdisciplinary Studies.
    2. Gaetano Perone, 2020. "An ARIMA model to forecast the spread and the final size of COVID-2019 epidemic in Italy," Health, Econometrics and Data Group (HEDG) Working Papers 20/07, HEDG, c/o Department of Economics, University of York.
    3. Sallahuddin Hassan & Zalila Othman, 2018. "Forecasting on the long-term sustainability of the employees provident fund in Malaysia via the Box-Jenkins’ ARIMA model," Business and Economic Horizons (BEH), Prague Development Center, vol. 14(1), pages 43-53, January.
    4. Liping Zhang & Li Wang & Yanling Zheng & Kai Wang & Xueliang Zhang & Yujian Zheng, 2017. "Time Prediction Models for Echinococcosis Based on Gray System Theory and Epidemic Dynamics," IJERPH, MDPI, vol. 14(3), pages 1-14, March.
    5. Firmino, Paulo Renato Alves & de Sales, Jair Paulino & Gonçalves Júnior, Jucier & da Silva, Taciana Araújo, 2020. "A non-central beta model to forecast and evaluate pandemics time series," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    6. Asmita Mahajan & Nonita Sharma & Silvia Aparicio-Obregon & Hashem Alyami & Abdullah Alharbi & Divya Anand & Manish Sharma & Nitin Goyal, 2022. "A Novel Stacking-Based Deterministic Ensemble Model for Infectious Disease Prediction," Mathematics, MDPI, vol. 10(10), pages 1-15, May.
    7. Fanyu Meng & Wenwu Gong & Jun Liang & Xian Li & Yiping Zeng & Lili Yang, 2021. "Impact of different control policies for COVID-19 outbreak on the air transportation industry: A comparison between China, the U.S. and Singapore," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-19, March.
    8. Iman Khosravi & Yaser Jouybari-Moghaddam & Mohammad Reza Sarajian, 2017. "The comparison of NN, SVR, LSSVR and ANFIS at modeling meteorological and remotely sensed drought indices over the eastern district of Isfahan, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1507-1522, July.
    9. Rui Zhang & Hejia Song & Qiulan Chen & Yu Wang & Songwang Wang & Yonghong Li, 2022. "Comparison of ARIMA and LSTM for prediction of hemorrhagic fever at different time scales in China," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-14, January.
    10. Xingyu Zhang & Tao Zhang & Jiao Pei & Yuanyuan Liu & Xiaosong Li & Pau Medrano-Gracia, 2016. "Time Series Modelling of Syphilis Incidence in China from 2005 to 2012," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-18, February.
    11. Sinan Keskin & Fatih Külahcı, 2023. "ARIMA model simulation for total electron content, earthquake and radon relationship identification," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 1955-1976, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0232910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.