IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0144403.html
   My bibliography  Save this article

Effect of Contrast on Visual Spatial Summation in Different Cell Categories in Cat Primary Visual Cortex

Author

Listed:
  • Ke Chen
  • Ai-Min Ding
  • Xiao-Hua Liang
  • Li-Peng Zhang
  • Ling Wang
  • Xue-Mei Song

Abstract

Multiple cell classes have been found in the primary visual cortex, but the relationship between cell types and spatial summation has seldom been studied. Parvalbumin-expressing inhibitory interneurons can be distinguished from pyramidal neurons based on their briefer action potential durations. In this study, we classified V1 cells into fast-spiking units (FSUs) and regular-spiking units (RSUs) and then examined spatial summation at high and low contrast. Our results revealed that the excitatory classical receptive field and the suppressive non-classical receptive field expanded at low contrast for both FSUs and RSUs, but the expansion was more marked for the RSUs than for the FSUs. For most V1 neurons, surround suppression varied as the contrast changed from high to low. However, FSUs exhibited no significant difference in the strength of suppression between high and low contrast, although the overall suppression decreased significantly at low contrast for the RSUs. Our results suggest that the modulation of spatial summation by stimulus contrast differs across populations of neurons in the cat primary visual cortex.

Suggested Citation

  • Ke Chen & Ai-Min Ding & Xiao-Hua Liang & Li-Peng Zhang & Ling Wang & Xue-Mei Song, 2015. "Effect of Contrast on Visual Spatial Summation in Different Cell Categories in Cat Primary Visual Cortex," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-14, December.
  • Handle: RePEc:plo:pone00:0144403
    DOI: 10.1371/journal.pone.0144403
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0144403
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0144403&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0144403?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Seung-Hee Lee & Alex C. Kwan & Siyu Zhang & Victoria Phoumthipphavong & John G. Flannery & Sotiris C. Masmanidis & Hiroki Taniguchi & Z. Josh Huang & Feng Zhang & Edward S. Boyden & Karl Deisseroth & , 2012. "Activation of specific interneurons improves V1 feature selectivity and visual perception," Nature, Nature, vol. 488(7411), pages 379-383, August.
    2. Yumiko Yoshimura & Jami L. M. Dantzker & Edward M. Callaway, 2005. "Excitatory cortical neurons form fine-scale functional networks," Nature, Nature, vol. 433(7028), pages 868-873, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Castonguay & Sébastien Thomas & Frédéric Lesage & Christian Casanova, 2014. "Repetitive and Retinotopically Restricted Activation of the Dorsal Lateral Geniculate Nucleus with Optogenetics," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-8, April.
    2. Masakazu Agetsuma & Issei Sato & Yasuhiro R. Tanaka & Luis Carrillo-Reid & Atsushi Kasai & Atsushi Noritake & Yoshiyuki Arai & Miki Yoshitomo & Takashi Inagaki & Hiroshi Yukawa & Hitoshi Hashimoto & J, 2023. "Activity-dependent organization of prefrontal hub-networks for associative learning and signal transformation," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    3. Xing, Miaomiao & Song, Xinlin & Wang, Hengtong & Yang, Zhuoqin & Chen, Yong, 2022. "Frequency synchronization and excitabilities of two coupled heterogeneous Morris-Lecar neurons," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    4. Yoav Printz & Pritish Patil & Mathias Mahn & Asaf Benjamin & Anna Litvin & Rivka Levy & Max Bringmann & Ofer Yizhar, 2023. "Determinants of functional synaptic connectivity among amygdala-projecting prefrontal cortical neurons in male mice," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Volker Pernice & Benjamin Staude & Stefano Cardanobile & Stefan Rotter, 2011. "How Structure Determines Correlations in Neuronal Networks," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-14, May.
    6. Gabriel Koch Ocker & Ashok Litwin-Kumar & Brent Doiron, 2015. "Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-40, August.
    7. Gabriel Koch Ocker & Krešimir Josić & Eric Shea-Brown & Michael A Buice, 2017. "Linking structure and activity in nonlinear spiking networks," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-47, June.
    8. Suchin S Gururangan & Alexander J Sadovsky & Jason N MacLean, 2014. "Analysis of Graph Invariants in Functional Neocortical Circuitry Reveals Generalized Features Common to Three Areas of Sensory Cortex," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-12, July.
    9. Yulin Shi & Zoran Nenadic & Xiangmin Xu, 2010. "Novel Use of Matched Filtering for Synaptic Event Detection and Extraction," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-15, November.
    10. Erez Persi & David Hansel & Lionel Nowak & Pascal Barone & Carl van Vreeswijk, 2011. "Power-Law Input-Output Transfer Functions Explain the Contrast-Response and Tuning Properties of Neurons in Visual Cortex," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-21, February.
    11. Maxim Volgushev & Vladimir Ilin & Ian H Stevenson, 2015. "Identifying and Tracking Simulated Synaptic Inputs from Neuronal Firing: Insights from In Vitro Experiments," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-31, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0144403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.