IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0141524.html
   My bibliography  Save this article

Application of Penalized Regression Techniques in Modelling Insulin Sensitivity by Correlated Metabolic Parameters

Author

Listed:
  • Christian S Göbl
  • Latife Bozkurt
  • Andrea Tura
  • Giovanni Pacini
  • Alexandra Kautzky-Willer
  • Martina Mittlböck

Abstract

This paper aims to introduce penalized estimation techniques in clinical investigations of diabetes, as well as to assess their possible advantages and limitations. Data from a previous study was used to carry out the simulations to assess: a) which procedure results in the lowest prediction error of the final model in the setting of a large number of predictor variables with high multicollinearity (of importance if insulin sensitivity should be predicted) and b) which procedure achieves the most accurate estimate of regression coefficients in the setting of fewer predictors with small unidirectional effects and moderate correlation between explanatory variables (of importance if the specific relation between an independent variable and insulin sensitivity should be examined). Moreover a special focus is on the correct direction of estimated parameter effects, a non-negligible source of error and misinterpretation of study results. The simulations were performed for varying sample size to evaluate the performance of LASSO, Ridge as well as different algorithms for Elastic Net. These methods were also compared with automatic variable selection procedures (i.e. optimizing AIC or BIC).We were not able to identify one method achieving superior performance in all situations. However, the improved accuracy of estimated effects underlines the importance of using penalized regression techniques in our example (e.g. if a researcher aims to compare relations of several correlated parameters with insulin sensitivity). However, the decision which procedure should be used depends on the specific context of a study (accuracy versus complexity) and moreover should involve clinical prior knowledge.

Suggested Citation

  • Christian S Göbl & Latife Bozkurt & Andrea Tura & Giovanni Pacini & Alexandra Kautzky-Willer & Martina Mittlböck, 2015. "Application of Penalized Regression Techniques in Modelling Insulin Sensitivity by Correlated Metabolic Parameters," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-19, November.
  • Handle: RePEc:plo:pone00:0141524
    DOI: 10.1371/journal.pone.0141524
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0141524
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0141524&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0141524?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    2. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    3. S. le Cessie & J. C. van Houwelingen, 1992. "Ridge Estimators in Logistic Regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(1), pages 191-201, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joe Alexander Jr. & Roger A Edwards & Marina Brodsky & Luigi Manca & Roberto Grugni & Alberto Savoldelli & Gianluca Bonfanti & Birol Emir & Ed Whalen & Steve Watt & Bruce Parsons, 2018. "Using time series analysis approaches for improved prediction of pain outcomes in subgroups of patients with painful diabetic peripheral neuropathy," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    2. Li Shaoyu & Lu Qing & Fu Wenjiang & Romero Roberto & Cui Yuehua, 2009. "A Regularized Regression Approach for Dissecting Genetic Conflicts that Increase Disease Risk in Pregnancy," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-30, October.
    3. Zanin, Luca, 2020. "Combining multiple probability predictions in the presence of class imbalance to discriminate between potential bad and good borrowers in the peer-to-peer lending market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 25(C).
    4. Luca Insolia & Ana Kenney & Martina Calovi & Francesca Chiaromonte, 2021. "Robust Variable Selection with Optimality Guarantees for High-Dimensional Logistic Regression," Stats, MDPI, vol. 4(3), pages 1-17, August.
    5. Kamiar Rahnama Rad & Arian Maleki, 2020. "A scalable estimate of the out‐of‐sample prediction error via approximate leave‐one‐out cross‐validation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 965-996, September.
    6. Tutz, Gerhard & Binder, Harald, 2007. "Boosting ridge regression," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6044-6059, August.
    7. Natalia Pecorari & Jose Cuesta, 2024. "Citizen Participation and Political Trust in Latin America and the Caribbean: A Machine Learning Approach," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 36(5), pages 1227-1252, October.
    8. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    9. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank.
    10. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    11. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    12. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    13. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    14. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    15. Dmitriy Drusvyatskiy & Adrian S. Lewis, 2018. "Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 919-948, August.
    16. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    17. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    18. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    19. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    20. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Working Papers 22-25, Federal Reserve Bank of Cleveland.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0141524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.