IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0137779.html
   My bibliography  Save this article

Forecasting Bifurcations from Large Perturbation Recoveries in Feedback Ecosystems

Author

Listed:
  • Kiran D’Souza
  • Bogdan I Epureanu
  • Mercedes Pascual

Abstract

Forecasting bifurcations such as critical transitions is an active research area of relevance to the management and preservation of ecological systems. In particular, anticipating the distance to critical transitions remains a challenge, together with predicting the state of the system after these transitions are breached. In this work, a new model-less method is presented that addresses both these issues based on monitoring recoveries from large perturbations. The approach uses data from recoveries of the system from at least two separate parameter values before the critical point, to predict both the bifurcation and the post-bifurcation dynamics. The proposed method is demonstrated, and its performance evaluated under different levels of measurement noise, with two ecological models that have been used extensively in previous studies of tipping points and alternative steady states. The first one considers the dynamics of vegetation under grazing; the second, those of macrophyte and phytoplankton in shallow lakes. Applications of the method to more complex situations are discussed together with the kinds of empirical data needed for its implementation.

Suggested Citation

  • Kiran D’Souza & Bogdan I Epureanu & Mercedes Pascual, 2015. "Forecasting Bifurcations from Large Perturbation Recoveries in Feedback Ecosystems," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-19, September.
  • Handle: RePEc:plo:pone00:0137779
    DOI: 10.1371/journal.pone.0137779
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0137779
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0137779&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0137779?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zeng, Chunhua & Wang, Hua, 2012. "Noise and large time delay: Accelerated catastrophic regime shifts in ecosystems," Ecological Modelling, Elsevier, vol. 233(C), pages 52-58.
    2. Robert M. May & Simon A. Levin & George Sugihara, 2008. "Ecology for bankers," Nature, Nature, vol. 451(7181), pages 893-894, February.
    3. Marten Scheffer & Steve Carpenter & Jonathan A. Foley & Carl Folke & Brian Walker, 2001. "Catastrophic shifts in ecosystems," Nature, Nature, vol. 413(6856), pages 591-596, October.
    4. John M. Drake & Blaine D. Griffen, 2010. "Early warning signals of extinction in deteriorating environments," Nature, Nature, vol. 467(7314), pages 456-459, September.
    5. Jose G. Venegas & Tilo Winkler & Guido Musch & Marcos F. Vidal Melo & Dominick Layfield & Nora Tgavalekos & Alan J. Fischman & Ronald J. Callahan & Giacomo Bellani & R. Scott Harris, 2005. "Self-organized patchiness in asthma as a prelude to catastrophic shifts," Nature, Nature, vol. 434(7034), pages 777-782, April.
    6. Marten Scheffer & Jordi Bascompte & William A. Brock & Victor Brovkin & Stephen R. Carpenter & Vasilis Dakos & Hermann Held & Egbert H. van Nes & Max Rietkerk & George Sugihara, 2009. "Early-warning signals for critical transitions," Nature, Nature, vol. 461(7260), pages 53-59, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manfred Füllsack & Daniel Reisinger, 2021. "Transition prediction in the Ising-model," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-14, November.
    2. Diouf, A. & Mokrani, H. & Ngom, D. & Haque, M. & Camara, B.I., 2019. "Detection and computation of high codimension bifurcations in diffuse predator–prey systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 402-411.
    3. Manfred Füllsack & Simon Plakolb & Georg Jäger, 2021. "Predicting regime shifts in social systems modelled with agent-based methods," Journal of Computational Social Science, Springer, vol. 4(1), pages 163-185, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tatiana Baumuratova & Simona Dobre & Thierry Bastogne & Thomas Sauter, 2013. "Switch of Sensitivity Dynamics Revealed with DyGloSA Toolbox for Dynamical Global Sensitivity Analysis as an Early Warning for System's Critical Transition," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-12, December.
    2. Georg Jäger & Manfred Füllsack, 2019. "Systematically false positives in early warning signal analysis," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-14, February.
    3. Georg Jäger & Christian Hofer & Marie Kapeller & Manfred Füllsack, 2017. "Hidden early-warning signals in scale-free networks," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-14, December.
    4. Martin Lindegren & Vasilis Dakos & Joachim P Gröger & Anna Gårdmark & Georgs Kornilovs & Saskia A Otto & Christian Möllmann, 2012. "Early Detection of Ecosystem Regime Shifts: A Multiple Method Evaluation for Management Application," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    5. Vasilis Dakos & Stephen R Carpenter & William A Brock & Aaron M Ellison & Vishwesha Guttal & Anthony R Ives & Sonia Kéfi & Valerie Livina & David A Seekell & Egbert H van Nes & Marten Scheffer, 2012. "Methods for Detecting Early Warnings of Critical Transitions in Time Series Illustrated Using Simulated Ecological Data," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-20, July.
    6. Zeng, Chunhua & Wang, Hua, 2012. "Noise and large time delay: Accelerated catastrophic regime shifts in ecosystems," Ecological Modelling, Elsevier, vol. 233(C), pages 52-58.
    7. William A Brock & Stephen R Carpenter, 2012. "Early Warnings of Regime Shift When the Ecosystem Structure Is Unknown," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-10, September.
    8. Krishnadas M. & K. P. Harikrishnan & G. Ambika, 2022. "Recurrence measures and transitions in stock market dynamics," Papers 2208.03456, arXiv.org.
    9. Vishwesha Guttal & Srinivas Raghavendra & Nikunj Goel & Quentin Hoarau, 2016. "Lack of Critical Slowing Down Suggests that Financial Meltdowns Are Not Critical Transitions, yet Rising Variability Could Signal Systemic Risk," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
    10. Zvonko Kostanjcar & Stjepan Begusic & H. E. Stanley & Boris Podobnik, 2015. "Estimating Tipping Points in Feedback-Driven Financial Networks," Papers 1509.04952, arXiv.org.
    11. Zhang, Hongxia & Xu, Wei & Guo, Qin & Han, Ping & Qiao, Yan, 2020. "First escape probability and mean first exit time for a time-delayed ecosystem driven by non-Gaussian colored noise," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    12. Richter, Andries & Dakos, Vasilis, 2015. "Profit fluctuations signal eroding resilience of natural resources," Ecological Economics, Elsevier, vol. 117(C), pages 12-21.
    13. Karimi Rahjerdi, Bahareh & Ramamoorthy, Ramesh & Nazarimehr, Fahimeh & Rajagopal, Karthikeyan & Jafari, Sajad, 2022. "Indicating the synchronization bifurcation points using the early warning signals in two case studies: Continuous and explosive synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    14. Duncan A. O’Brien & Smita Deb & Gideon Gal & Stephen J. Thackeray & Partha S. Dutta & Shin-ichiro S. Matsuzaki & Linda May & Christopher F. Clements, 2023. "Early warning signals have limited applicability to empirical lake data," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. Fushing, Hsieh & Jordà, Òscar & Beisner, Brianne & McCowan, Brenda, 2014. "Computing systemic risk using multiple behavioral and keystone networks: The emergence of a crisis in primate societies and banks," International Journal of Forecasting, Elsevier, vol. 30(3), pages 797-806.
    16. Christian Meisel & Andreas Klaus & Christian Kuehn & Dietmar Plenz, 2015. "Critical Slowing Down Governs the Transition to Neuron Spiking," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-20, February.
    17. Florian Wagener, 2013. "Shallow lake economics run deep: nonlinear aspects of an economic-ecological interest conflict," Computational Management Science, Springer, vol. 10(4), pages 423-450, December.
    18. Kevin Thellmann & Marc Cotter & Sabine Baumgartner & Anna Treydte & Georg Cadisch & Folkard Asch, 2018. "Tipping Points in the Supply of Ecosystem Services of a Mountainous Watershed in Southeast Asia," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
    19. Maarten C Boerlijst & Thomas Oudman & André M de Roos, 2013. "Catastrophic Collapse Can Occur without Early Warning: Examples of Silent Catastrophes in Structured Ecological Models," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-6, April.
    20. Manfred Füllsack & Daniel Reisinger & Marie Kapeller & Georg Jäger, 2022. "Early warning signals from the periphery," Journal of Computational Social Science, Springer, vol. 5(1), pages 665-685, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0137779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.