IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0130335.html
   My bibliography  Save this article

Visual Perception of Procedural Textures: Identifying Perceptual Dimensions and Predicting Generation Models

Author

Listed:
  • Jun Liu
  • Junyu Dong
  • Xiaoxu Cai
  • Lin Qi
  • Mike Chantler

Abstract

Procedural models are widely used in computer graphics for generating realistic, natural-looking textures. However, these mathematical models are not perceptually meaningful, whereas the users, such as artists and designers, would prefer to make descriptions using intuitive and perceptual characteristics like "repetitive," "directional," "structured," and so on. To make up for this gap, we investigated the perceptual dimensions of textures generated by a collection of procedural models. Two psychophysical experiments were conducted: free-grouping and rating. We applied Hierarchical Cluster Analysis (HCA) and Singular Value Decomposition (SVD) to discover the perceptual features used by the observers in grouping similar textures. The results suggested that existing dimensions in literature cannot accommodate random textures. We therefore utilized isometric feature mapping (Isomap) to establish a three-dimensional perceptual texture space which better explains the features used by humans in texture similarity judgment. Finally, we proposed computational models to map perceptual features to the perceptual texture space, which can suggest a procedural model to produce textures according to user-defined perceptual scales.

Suggested Citation

  • Jun Liu & Junyu Dong & Xiaoxu Cai & Lin Qi & Mike Chantler, 2015. "Visual Perception of Procedural Textures: Identifying Perceptual Dimensions and Predicting Generation Models," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-22, June.
  • Handle: RePEc:plo:pone00:0130335
    DOI: 10.1371/journal.pone.0130335
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130335
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0130335&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0130335?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Roger Shepard, 1962. "The analysis of proximities: Multidimensional scaling with an unknown distance function. II," Psychometrika, Springer;The Psychometric Society, vol. 27(3), pages 219-246, September.
    2. Su-Jing Wang & Chun-Guang Zhou & Xiaolan Fu, 2013. "Fusion Tensor Subspace Transformation Framework," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-8, July.
    3. Roger Shepard, 1962. "The analysis of proximities: Multidimensional scaling with an unknown distance function. I," Psychometrika, Springer;The Psychometric Society, vol. 27(2), pages 125-140, June.
    4. Isamu Motoyoshi & Shin'ya Nishida & Lavanya Sharan & Edward H. Adelson, 2007. "Image statistics and the perception of surface qualities," Nature, Nature, vol. 447(7141), pages 206-209, May.
    5. Carlo Baldassi & Alireza Alemi-Neissi & Marino Pagan & James J DiCarlo & Riccardo Zecchina & Davide Zoccolan, 2013. "Shape Similarity, Better than Semantic Membership, Accounts for the Structure of Visual Object Representations in a Population of Monkey Inferotemporal Neurons," PLOS Computational Biology, Public Library of Science, vol. 9(8), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roger Shepard, 1974. "Representation of structure in similarity data: Problems and prospects," Psychometrika, Springer;The Psychometric Society, vol. 39(4), pages 373-421, December.
    2. la Grange, Anthony & le Roux, Niël & Gardner-Lubbe, Sugnet, 2009. "BiplotGUI: Interactive Biplots in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 30(i12).
    3. Venera Tomaselli, 1996. "Multivariate statistical techniques and sociological research," Quality & Quantity: International Journal of Methodology, Springer, vol. 30(3), pages 253-276, August.
    4. Bijmolt, T.H.A. & Wedel, M., 1996. "A Monte Carlo Evaluation of Maximum Likelihood Multidimensional Scaling Methods," Other publications TiSEM f72cc9d8-f370-43aa-a224-4, Tilburg University, School of Economics and Management.
    5. Phipps Arabie & J. Carroll, 1980. "Mapclus: A mathematical programming approach to fitting the adclus model," Psychometrika, Springer;The Psychometric Society, vol. 45(2), pages 211-235, June.
    6. Yoshio Takane & Forrest Young & Jan Leeuw, 1977. "Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 42(1), pages 7-67, March.
    7. Karim Abou-Moustafa & Frank P. Ferrie, 2018. "Local generalized quadratic distance metrics: application to the k-nearest neighbors classifier," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 341-363, June.
    8. M. Keshavarzi & M. A. Dehghan & M. Mashinchi, 2012. "Applications of classification based on similarities and dissimilarities," Fuzzy Information and Engineering, Springer, vol. 4(1), pages 75-91, March.
    9. Dionisios Koutsantonis & Konstantinos Koutsantonis & Nikolaos P. Bakas & Vagelis Plevris & Andreas Langousis & Savvas A. Chatzichristofis, 2022. "Bibliometric Literature Review of Adaptive Learning Systems," Sustainability, MDPI, vol. 14(19), pages 1-18, October.
    10. Henry Brady, 1989. "Factor and ideal point analysis for interpersonally incomparable data," Psychometrika, Springer;The Psychometric Society, vol. 54(2), pages 181-202, June.
    11. Stephen Johnson, 1967. "Hierarchical clustering schemes," Psychometrika, Springer;The Psychometric Society, vol. 32(3), pages 241-254, September.
    12. Maital, Shlomo, 1976. "Multidimensional Scaling: Some Economic Applications," Foerder Institute for Economic Research Working Papers 275316, Tel-Aviv University > Foerder Institute for Economic Research.
    13. Fernández, Xosé Luis & Coto-Millán, Pablo & Díaz-Medina, Benito, 2018. "The impact of tourism on airport efficiency: The Spanish case," Utilities Policy, Elsevier, vol. 55(C), pages 52-58.
    14. Morales José F. & Song Tingting & Auerbach Arleen D. & Wittkowski Knut M., 2008. "Phenotyping Genetic Diseases Using an Extension of µ-Scores for Multivariate Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-20, June.
    15. J. Kruskal, 1964. "Nonmetric multidimensional scaling: A numerical method," Psychometrika, Springer;The Psychometric Society, vol. 29(2), pages 115-129, June.
    16. Roger Girard & Norman Cliff, 1976. "A monte carlo evaluation of interactive multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 41(1), pages 43-64, March.
    17. Lyle Jones, 1963. "Beyond Babbage," Psychometrika, Springer;The Psychometric Society, vol. 28(4), pages 315-331, December.
    18. Karen E. Kirkhart & Robert O. Morgan, 1986. "Evaluation in Mental Health Centers," Evaluation Review, , vol. 10(1), pages 127-141, February.
    19. Lopes, António M. & Machado, J.A. Tenreiro, 2017. "Computational comparison and pattern visualization of forest fires," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 407-413.
    20. J. Ramsay, 1969. "Some statistical considerations in multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 34(2), pages 167-182, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0130335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.