IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0089091.html
   My bibliography  Save this article

Quantification of Health by Scaling Similarity Judgments

Author

Listed:
  • Alexander M M Arons
  • Paul F M Krabbe

Abstract

Objective: A new methodology is introduced to scale health states on an interval scale based on similarity responses. It could be well suited for valuation of health states on specific regions of the health continuum that are problematic when applying conventional valuation techniques. These regions are the top-end, bottom-end, and states around ‘dead’. Methods: Three samples of approximately 500 respondents were recruited via an online survey. Each sample received a different judgmental task in which similarity data were elicited for the top seven health states in the dementia quality of life instrument (DQI). These states were ‘111111’ (no problems on any domain) and six others with some problems (level 2) on one domain. The tasks presented two (dyads), three (triads), or four (quads) DQI health states. Similarity data were transformed into interval-level scales with metric and non-metric multidimensional scaling algorithms. The three response tasks were assessed for their feasibility and comprehension. Results: In total 532, 469, and 509 respondents participated in the dyads, triads, and quads tasks respectively. After the scaling procedure, in all three response tasks, the best health state ‘111111’ was positioned at one end of the health-state continuum and state ‘111211’ was positioned at the other. The correlation between the metric scales ranged from 0.73 to 0.95, while the non-metric scales ranged from 0.76 to 1.00, indicating strong to near perfect associations. There were no apparent differences in the reported difficulty of the response tasks, but the triads had the highest number of drop-outs. Discussion: Multidimensional scaling proved to be a feasible method to scale health-state similarity data. The dyads and especially the quads response tasks warrant further investigation, as these tasks provided the best indications of respondent comprehension.

Suggested Citation

  • Alexander M M Arons & Paul F M Krabbe, 2014. "Quantification of Health by Scaling Similarity Judgments," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-10, February.
  • Handle: RePEc:plo:pone00:0089091
    DOI: 10.1371/journal.pone.0089091
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0089091
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0089091&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0089091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. George W. Torrance & Michael H. Boyle & Sargent P. Horwood, 1982. "Application of Multi-Attribute Utility Theory to Measure Social Preferences for Health States," Operations Research, INFORMS, vol. 30(6), pages 1043-1069, December.
    2. Han Bleichrodt & Magnus Johannesson, 1997. "An Experimental Test of a Theoretical Foundation for Rating-scale Valuations," Medical Decision Making, , vol. 17(2), pages 208-216, April.
    3. McCabe, Christopher & Brazier, John & Gilks, Peter & Tsuchiya, Aki & Roberts, Jennifer & O'Hagan, Anthony & Stevens, Katherine, 2006. "Using rank data to estimate health state utility models," Journal of Health Economics, Elsevier, vol. 25(3), pages 418-431, May.
    4. Nancy J. Devlin & Aki Tsuchiya & Ken Buckingham & Carl Tilling, 2011. "A uniform time trade off method for states better and worse than dead: feasibility study of the ‘lead time’ approach," Health Economics, John Wiley & Sons, Ltd., vol. 20(3), pages 348-361, March.
    5. Flynn, Terry N. & Louviere, Jordan J. & Peters, Tim J. & Coast, Joanna, 2007. "Best-worst scaling: What it can do for health care research and how to do it," Journal of Health Economics, Elsevier, vol. 26(1), pages 171-189, January.
    6. Angela Robinson & Graham Loomes & Michael Jones-Lee, 2001. "Visual Analog Scales, Standard Gambles, and Relative Risk Aversion," Medical Decision Making, , vol. 21(1), pages 17-27, February.
    7. Coast, Joanna & Flynn, Terry N. & Natarajan, Lucy & Sproston, Kerry & Lewis, Jane & Louviere, Jordan J. & Peters, Tim J., 2008. "Valuing the ICECAP capability index for older people," Social Science & Medicine, Elsevier, vol. 67(5), pages 874-882, September.
    8. Roger Shepard, 1962. "The analysis of proximities: Multidimensional scaling with an unknown distance function. II," Psychometrika, Springer;The Psychometric Society, vol. 27(3), pages 219-246, September.
    9. Zafar Hakim & Dev S. Pathak, 1999. "Modelling the EuroQol data: a comparison of discrete choice conjoint and conditional preference modelling," Health Economics, John Wiley & Sons, Ltd., vol. 8(2), pages 103-116, March.
    10. J. Kruskal, 1964. "Nonmetric multidimensional scaling: A numerical method," Psychometrika, Springer;The Psychometric Society, vol. 29(2), pages 115-129, June.
    11. J. Kruskal, 1964. "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis," Psychometrika, Springer;The Psychometric Society, vol. 29(1), pages 1-27, March.
    12. Roger Shepard, 1962. "The analysis of proximities: Multidimensional scaling with an unknown distance function. I," Psychometrika, Springer;The Psychometric Society, vol. 27(2), pages 125-140, June.
    13. Arthur Attema & Yvette Edelaar-Peeters & Matthijs Versteegh & Elly Stolk, 2013. "Time trade-off: one methodology, different methods," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 14(1), pages 53-64, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jerzy Grobelny & Rafal Michalski & Gerhard-Wilhelm Weber, 2021. "Modeling human thinking about similarities by neuromatrices in the perspective of fuzzy logic," WORking papers in Management Science (WORMS) WORMS/21/09, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    2. Giovanni De Luca & Paola Zuccolotto, 2011. "A tail dependence-based dissimilarity measure for financial time series clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(4), pages 323-340, December.
    3. Hossein Safizadeh, M. & McKenna, David R., 1996. "Application of multidimensional scaling techniques to facilities layout," European Journal of Operational Research, Elsevier, vol. 92(1), pages 54-62, July.
    4. Phipps Arabie, 1991. "Was euclid an unnecessarily sophisticated psychologist?," Psychometrika, Springer;The Psychometric Society, vol. 56(4), pages 567-587, December.
    5. Verniest, Fabien & Greulich, Sabine, 2019. "Methods for assessing the effects of environmental parameters on biological communities in long-term ecological studies - A literature review," Ecological Modelling, Elsevier, vol. 414(C).
    6. J. Carroll, 1985. "Review," Psychometrika, Springer;The Psychometric Society, vol. 50(1), pages 133-140, March.
    7. Aurea Grané & Rosario Romera, 2018. "On Visualizing Mixed-Type Data," Sociological Methods & Research, , vol. 47(2), pages 207-239, March.
    8. Jacqueline Meulman, 1992. "The integration of multidimensional scaling and multivariate analysis with optimal transformations," Psychometrika, Springer;The Psychometric Society, vol. 57(4), pages 539-565, December.
    9. Groenen, P.J.F. & Borg, I., 2013. "The Past, Present, and Future of Multidimensional Scaling," Econometric Institute Research Papers EI 2013-07, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    10. Paul F. M. Krabbe & Elly A. Stolk & Nancy J. Devlin & Feng Xie & Elise H. Quik & A. Simon Pickard, 2017. "Head-to-head comparison of health-state values derived by a probabilistic choice model and scores on a visual analogue scale," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 18(8), pages 967-977, November.
    11. Julie Ratcliffe & John Brazier & Aki Tsuchiya & Tara Symonds & Martin Brown, 2009. "Using DCE and ranking data to estimate cardinal values for health states for deriving a preference‐based single index from the sexual quality of life questionnaire," Health Economics, John Wiley & Sons, Ltd., vol. 18(11), pages 1261-1276, November.
    12. Jacqueline Meulman & Peter Verboon, 1993. "Points of view analysis revisited: Fitting multidimensional structures to optimal distance components with cluster restrictions on the variables," Psychometrika, Springer;The Psychometric Society, vol. 58(1), pages 7-35, March.
    13. Julie Ratcliffe & Leah Couzner & Terry Flynn & Michael Sawyer & Katherine Stevens & John Brazier & Leonie Burgess, 2011. "Valuing child health utility 9D health states with a young adolescent sample," Applied Health Economics and Health Policy, Springer, vol. 9(1), pages 15-27, January.
    14. Patrick Groenen & Willem Heiser, 1996. "The tunneling method for global optimization in multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 529-550, September.
    15. Wayne DeSarbo & Ajay Manrai & Raymond Burke, 1990. "A nonspatial methodology for the analysis of two-way proximity data incorporating the distance-density hypothesis," Psychometrika, Springer;The Psychometric Society, vol. 55(2), pages 229-253, June.
    16. Roger Shepard, 1974. "Representation of structure in similarity data: Problems and prospects," Psychometrika, Springer;The Psychometric Society, vol. 39(4), pages 373-421, December.
    17. Juan Ramos-Goñi & Oliver Rivero-Arias & María Errea & Elly Stolk & Michael Herdman & Juan Cabasés, 2013. "Dealing with the health state ‘dead’ when using discrete choice experiments to obtain values for EQ-5D-5L heath states," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 14(1), pages 33-42, July.
    18. Venera Tomaselli, 1996. "Multivariate statistical techniques and sociological research," Quality & Quantity: International Journal of Methodology, Springer, vol. 30(3), pages 253-276, August.
    19. Bijmolt, T.H.A. & Wedel, M., 1996. "A Monte Carlo Evaluation of Maximum Likelihood Multidimensional Scaling Methods," Other publications TiSEM f72cc9d8-f370-43aa-a224-4, Tilburg University, School of Economics and Management.
    20. Phipps Arabie & J. Carroll, 1980. "Mapclus: A mathematical programming approach to fitting the adclus model," Psychometrika, Springer;The Psychometric Society, vol. 45(2), pages 211-235, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0089091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.