IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0124162.html
   My bibliography  Save this article

Macroalgae Inhibits Larval Settlement and Increases Recruit Mortality at Ningaloo Reef, Western Australia

Author

Listed:
  • Fiona J Webster
  • Russell C Babcock
  • Mike Van Keulen
  • Neil R Loneragan

Abstract

Globally, many coral reefs are degraded and demonstrate reduced coral cover and increased macroalgal abundance. While negative correlations between macroalgae and coral recruitment have commonly been documented, the mechanisms by which macroalgae affects recruitment have received little attention. Here we examined the effect of macroalgae on larval settlement and the growth and survival of coral recruits, in a field experiment over nine months. Exclusion treatments were used to manipulate herbivory and macroalgal biomass, while settlement tiles measured coral settlement and survival. After nine months the volume of macroalgae was up to 40 times greater in the caged treatments than in controls and the settlement of coral larvae on the undersides of tiles within caged plots was 93% lower than in the uncaged treatments. The growth and survival of coral recruits was also severely reduced in the presence of macroalgae: survival was 79% lower in caged treatments and corals were up to 58% smaller with 75% fewer polyps. These data indicate that macroalgae has an additive effect on coral recruitment by reducing larval settlement and increasing recruit mortality. This research demonstrates that macroalgae can not only inhibit coral recruitment, but also potentially maintain dominance through a positive feedback system.

Suggested Citation

  • Fiona J Webster & Russell C Babcock & Mike Van Keulen & Neil R Loneragan, 2015. "Macroalgae Inhibits Larval Settlement and Increases Recruit Mortality at Ningaloo Reef, Western Australia," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-14, April.
  • Handle: RePEc:plo:pone00:0124162
    DOI: 10.1371/journal.pone.0124162
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0124162
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0124162&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0124162?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charles R. C. Sheppard, 2003. "Predicted recurrences of mass coral mortality in the Indian Ocean," Nature, Nature, vol. 425(6955), pages 294-297, September.
    2. D. R. Bellwood & T. P. Hughes & C. Folke & M. Nyström, 2004. "Confronting the coral reef crisis," Nature, Nature, vol. 429(6994), pages 827-833, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicholas A J Graham & Tim R McClanahan & M Aaron MacNeil & Shaun K Wilson & Nicholas V C Polunin & Simon Jennings & Pascale Chabanet & Susan Clark & Mark D Spalding & Yves Letourneur & Lionel Bigot & , 2008. "Climate Warming, Marine Protected Areas and the Ocean-Scale Integrity of Coral Reef Ecosystems," PLOS ONE, Public Library of Science, vol. 3(8), pages 1-9, August.
    2. Teh, Louise S.L. & Teh, Lydia C.L. & Rashid Sumaila, U., 2014. "Time preference of small-scale fishers in open access and traditionally managed reef fisheries," Marine Policy, Elsevier, vol. 44(C), pages 222-231.
    3. Yu-Rong Cheng & Chi-Hsiang Chin & Ding-Fa Lin & Chao-Kang Wang, 2020. "The Probability of an Unrecoverable Coral Community in Dongsha Atoll Marine National Park Due to Recurrent Disturbances," Sustainability, MDPI, vol. 12(21), pages 1-20, October.
    4. Conrad W Speed & Russ C Babcock & Kevin P Bancroft & Lynnath E Beckley & Lynda M Bellchambers & Martial Depczynski & Stuart N Field & Kim J Friedman & James P Gilmour & Jean-Paul A Hobbs & Halina T Ko, 2013. "Dynamic Stability of Coral Reefs on the West Australian Coast," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-12, July.
    5. Wamukota, A. & Brewer, T.D. & Crona, B., 2014. "Market integration and its relation to income distribution and inequality among fishers and traders: The case of two small-scale Kenyan reef fisheries," Marine Policy, Elsevier, vol. 48(C), pages 93-101.
    6. Reiji Masuda, 2020. "Tropical fishes vanished after the operation of a nuclear power plant was suspended in the Sea of Japan," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-13, May.
    7. Christine Bergman & Rochelle Good & Andrew Moreo, 2022. "Influencing Hotel Patrons to Use Reef-Safe Sunscreen," Tourism and Hospitality, MDPI, vol. 3(3), pages 1-22, June.
    8. Chambers, Paul E. & Glenn Dutcher, E. & Mark Isaac, R., 2018. "Improving Environmental Quality Through Aid: An Experimental Analysis of Aid Structures With Heterogeneous Agents," Ecological Economics, Elsevier, vol. 146(C), pages 435-446.
    9. Srinivasan, Venkatraman & Kumar, Praveen, 2015. "Emergent and divergent resilience behavior in catastrophic shift systems," Ecological Modelling, Elsevier, vol. 298(C), pages 87-105.
    10. Pittman, S.J. & Christensen, J.D. & Caldow, C. & Menza, C. & Monaco, M.E., 2007. "Predictive mapping of fish species richness across shallow-water seascapes in the Caribbean," Ecological Modelling, Elsevier, vol. 204(1), pages 9-21.
    11. Timothy McClanahan & Joseph Maina & Mebrahtu Ateweberhan, 2015. "Regional coral responses to climate disturbances and warming is predicted by multivariate stress model and not temperature threshold metrics," Climatic Change, Springer, vol. 131(4), pages 607-620, August.
    12. Matthew J. Powell-Palm & E. Michael Henley & Anthony N. Consiglio & Claire Lager & Brooke Chang & Riley Perry & Kendall Fitzgerald & Jonathan Daly & Boris Rubinsky & Mary Hagedorn, 2023. "Cryopreservation and revival of Hawaiian stony corals using isochoric vitrification," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Brathwaite, Angelique & Pascal, Nicolas & Clua, Eric, 2021. "When are payment for ecosystems services suitable for coral reef derived coastal protection?: A review of scientific requirements," Ecosystem Services, Elsevier, vol. 49(C).
    14. Muko, Soyoka & Arakaki, Seiji & Tamai, Reiko & Sakai, Kazuhiko, 2014. "An individual-based model for population viability analysis of the brooding coral Seriatopora hystrix," Ecological Modelling, Elsevier, vol. 277(C), pages 68-76.
    15. Alexandre C. Siqueira & Wolfgang Kiessling & David R. Bellwood, 2022. "Fast-growing species shape the evolution of reef corals," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    16. Meixia Zhao & Haiyang Zhang & Yu Zhong & Dapeng Jiang & Guohui Liu & Hongqiang Yan & Hongyu Zhang & Pu Guo & Cuitian Li & Hongqiang Yang & Tegu Chen & Rui Wang, 2019. "The Status of Coral Reefs and Its Importance for Coastal Protection: A Case Study of Northeastern Hainan Island, South China Sea," Sustainability, MDPI, vol. 11(16), pages 1-13, August.
    17. Jan Tebben & James R Guest & Tsai M Sin & Peter D Steinberg & Tilmann Harder, 2014. "Corals Like It Waxed: Paraffin-Based Antifouling Technology Enhances Coral Spat Survival," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-8, January.
    18. Dercole, Fabio & Prieu, Charlotte & Rinaldi, Sergio, 2010. "Technological change and fisheries sustainability: The point of view of Adaptive Dynamics," Ecological Modelling, Elsevier, vol. 221(3), pages 379-387.
    19. Juan Shi & Chunhou Li & Teng Wang & Jinfa Zhao & Yong Liu & Yayuan Xiao, 2022. "Distribution Pattern of Coral Reef Fishes in China," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    20. Nicolai Konow & David R Bellwood, 2011. "Evolution of High Trophic Diversity Based on Limited Functional Disparity in the Feeding Apparatus of Marine Angelfishes (f. Pomacanthidae)," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-11, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0124162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.