IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0115792.html
   My bibliography  Save this article

The Incidence of Sexually Dimorphic Gene Expression Varies Greatly between Tissues in the Rat

Author

Listed:
  • Russell D J Huby
  • Philip Glaves
  • Richard Jackson

Abstract

The sexually dimorphic expression of genes across 26 somatic rat tissues was using Affymetrix RAE-230 genechips. We considered probesets to be sexually dimorphically expressed (SDE) if they were measurably expressed above background in at least one sex, there was at least a two-fold difference in expression (dimorphism) between the sexes, and the differences were statistically significant after correcting for false discovery. 14.5% of expressed probesets were SDE in at least one tissue, with higher expression nearly twice as prevalent in males compared to females. Most were SDE in a single tissue. Surprisingly, nearly half of the probesets that were (SDE) in multiple tissues were oppositely sex biased in different tissues, and most SDE probesets were also expressed without sex bias in other tissues. Two genes were widely SDE: Xist (female-only) and Eif2s3y (male-only). The frequency of SDE probesets varied widely between tissues, and was highest in the duodenum (6.2%), whilst less than 0.05% in over half of the surveyed tissues. The occurrence of SDE probesets was not strongly correlated between tissues. Within individual tissues, however, relational networks of SDE genes were identified. In the liver, networks relating to differential metabolism between the sexes were seen. The estrogen receptor was implicated in differential gene expression in the duodenum. To conclude, sexually dimorphic gene expression is common, but highly tissue-dependent. Sexually dimorphic gene expression may provide insights into mechanisms underlying phenotypic sex differences. Online data are provided as a resource for further analyses (GEO reference GSE63362).

Suggested Citation

  • Russell D J Huby & Philip Glaves & Richard Jackson, 2014. "The Incidence of Sexually Dimorphic Gene Expression Varies Greatly between Tissues in the Rat," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-19, December.
  • Handle: RePEc:plo:pone00:0115792
    DOI: 10.1371/journal.pone.0115792
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0115792
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0115792&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0115792?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhijin Wu & Rafael A. Irizarry & Robert Gentleman & Francisco Martinez-Murillo & Forrest Spencer, 2004. "A Model-Based Background Adjustment for Oligonucleotide Expression Arrays," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 909-917, December.
    2. Zhijin Wu & Rafael Irizarry & Robert Gentleman & Francisco Martinez Murillo & Forrest Spencer, 2004. "A Model Based Background Adjustment for Oligonucleotide Expression Arrays," Johns Hopkins University Dept. of Biostatistics Working Paper Series 1001, Berkeley Electronic Press.
    3. Carina Dennis, 2004. "The most important sexual organ," Nature, Nature, vol. 427(6973), pages 390-392, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rinku Sharma & Garima Singh & Sudeepto Bhattacharya & Ashutosh Singh, 2018. "Comparative transcriptome meta-analysis of Arabidopsis thaliana under drought and cold stress," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-18, September.
    2. Jin-Xing Liu & Yong Xu & Chun-Hou Zheng & Yi Wang & Jing-Yu Yang, 2012. "Characteristic Gene Selection via Weighting Principal Components by Singular Values," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-10, July.
    3. Nan Li & Matthew N. McCall & Zhijin Wu, 2017. "Establishing Informative Prior for Gene Expression Variance from Public Databases," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 160-177, June.
    4. Sigrun Helga Lund & Daniel Fannar Gudbjartsson & Thorunn Rafnar & Asgeir Sigurdsson & Sigurjon Axel Gudjonsson & Julius Gudmundsson & Kari Stefansson & Gunnar Stefansson, 2014. "A Method for Detecting Long Non-Coding RNAs with Tiled RNA Expression Microarrays," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-9, June.
    5. Krishanpal Anamika & Àkos Gyenis & Laetitia Poidevin & Olivier Poch & Làszlò Tora, 2012. "RNA Polymerase II Pausing Downstream of Core Histone Genes Is Different from Genes Producing Polyadenylated Transcripts," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-14, June.
    6. Lei Zhang & Linlin Wang & Pu Tian & Suyan Tian, 2016. "Identification of Genes Discriminating Multiple Sclerosis Patients from Controls by Adapting a Pathway Analysis Method," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-13, November.
    7. Upton Graham J. G. & Harrison Andrew P, 2010. "The Detection of Blur in Affymetrix GeneChips," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-19, October.
    8. Ryan Abo & Gregory D Jenkins & Liewei Wang & Brooke L Fridley, 2012. "Identifying the Genetic Variation of Gene Expression Using Gene Sets: Application of Novel Gene Set eQTL Approach to PharmGKB and KEGG," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-11, August.
    9. Jeremiah J Faith & Boris Hayete & Joshua T Thaden & Ilaria Mogno & Jamey Wierzbowski & Guillaume Cottarel & Simon Kasif & James J Collins & Timothy S Gardner, 2007. "Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles," PLOS Biology, Public Library of Science, vol. 5(1), pages 1-13, January.
    10. Chalise, Prabhakar & Fridley, Brooke L., 2012. "Comparison of penalty functions for sparse canonical correlation analysis," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 245-254.
    11. Marot Guillemette & Mayer Claus-Dieter, 2009. "Sequential Analysis for Microarray Data Based on Sensitivity and Meta-Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-35, January.
    12. Wei-Chung Cheng & Cheng-Wei Chang & Chaang-Ray Chen & Min-Lung Tsai & Wun-Yi Shu & Chia-Yang Li & Ian C Hsu, 2011. "Identification of Reference Genes across Physiological States for qRT-PCR through Microarray Meta-Analysis," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-8, February.
    13. Parker Hilary S. & Leek Jeffrey T., 2012. "The practical effect of batch on genomic prediction," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-22, April.
    14. Suyan Tian & James G Krueger & Katherine Li & Ali Jabbari & Carrie Brodmerkel & Michelle A Lowes & Mayte Suárez-Fariñas, 2012. "Meta-Analysis Derived (MAD) Transcriptome of Psoriasis Defines the “Core” Pathogenesis of Disease," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-15, September.
    15. Akul Singhania & Hitasha Rupani & Nivenka Jayasekera & Simon Lumb & Paul Hales & Neil Gozzard & Donna E Davies & Christopher H Woelk & Peter H Howarth, 2017. "Altered Epithelial Gene Expression in Peripheral Airways of Severe Asthma," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-16, January.
    16. Erick da Conceição Amorim & Vinícius Diniz Mayrink, 2020. "Clustering non-linear interactions in factor analysis," METRON, Springer;Sapienza Università di Roma, vol. 78(3), pages 329-352, December.
    17. Huixia Wang & Xuming He, 2008. "An Enhanced Quantile Approach for Assessing Differential Gene Expressions," Biometrics, The International Biometric Society, vol. 64(2), pages 449-457, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0115792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.