IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0114406.html
   My bibliography  Save this article

An Integrated Approach for Platoon-based Simulation and Its Feasibility Assessment

Author

Listed:
  • Kok Mun Ng
  • Mamun Bin Ibne Reaz

Abstract

Research on developing mathematical and simulative models to evaluate performance of signalized arterials is still ongoing. In this paper, an integrated model (IM) based on Rakha vehicle dynamics and LWR model is proposed. The IM which imitates actuated performance measurement in signalized arterials is described using continuous timed Petri net with variable speeds (VCPN). This enables systematic discretized description of platoon movement from an upstream signalized intersection towards a downstream signalized intersection. The integration is based on the notion that speed and travel time characteristics in a link can be provided using Rakha model. This will assist the LWR to estimate arrival profiles of vehicles at downstream intersection. One immediate benefit of the model is that platoon arrival profile obtained from the IM can be directly manipulated to estimate queues and delays at the target intersection using input-output analysis without considering the effect of shockwaves. This is less tedious as compared to analysing the LWR model through tracing trajectory of shockwave. Besides, time parameters of a platoon could be estimated for self-scheduling control approach from a cycle to cycle basis. The proposed IM is applied to a test intersection where simulated queues and average delays from the IM are compared with the platoon dispersion model (PDM) implemented in TRANSYT, cell transmission model (CTM) and HCM2000 for both under-saturated and oversaturated situations. The comparisons yielded acceptable and reasonable results, thus ascertained the feasibility and validity of the model.

Suggested Citation

  • Kok Mun Ng & Mamun Bin Ibne Reaz, 2015. "An Integrated Approach for Platoon-based Simulation and Its Feasibility Assessment," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-25, March.
  • Handle: RePEc:plo:pone00:0114406
    DOI: 10.1371/journal.pone.0114406
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0114406
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0114406&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0114406?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tang, Jinjun & Wang, Yinhai & Liu, Fang, 2013. "Characterizing traffic time series based on complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4192-4201.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Hongzhi & Zhang, Xingchen & Zhang, Xie, 2018. "Exploring dynamic evolution and fluctuation characteristics of air traffic flow volume time series: A single waypoint case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 560-571.
    2. Tang, Jinjun & Zhang, Shen & Zhang, Wenhui & Liu, Fang & Zhang, Weibin & Wang, Yinhai, 2016. "Statistical properties of urban mobility from location-based travel networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 694-707.
    3. Peng, Yanni & Xiang, Wanli, 2020. "Short-term traffic volume prediction using GA-BP based on wavelet denoising and phase space reconstruction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    4. Guo, Yajuan & Yang, Licai & Hao, Shenxue & Gao, Jun, 2019. "Dynamic identification of urban traffic congestion warning communities in heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 98-111.
    5. Jiang, Xurui & Wen, Xiangxi & Wu, Minggong & Song, Min & Tu, Congliang, 2019. "A complex network analysis approach for identifying air traffic congestion based on independent component analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 364-381.
    6. Yan, Ying & Zhang, Shen & Tang, Jinjun & Wang, Xiaofei, 2017. "Understanding characteristics in multivariate traffic flow time series from complex network structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 149-160.
    7. Yang, Qiaoli & Shi, Zhongke, 2018. "Effects of the design of waiting areas on the dynamic behavior of queues at signalized intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 181-195.
    8. Baggio, Rodolfo & Sainaghi, Ruggero, 2016. "Mapping time series into networks as a tool to assess the complex dynamics of tourism systems," Tourism Management, Elsevier, vol. 54(C), pages 23-33.
    9. Borges, João B. & Ramos, Heitor S. & Mini, Raquel A.F. & Rosso, Osvaldo A. & Frery, Alejandro C. & Loureiro, Antonio A.F., 2019. "Learning and distinguishing time series dynamics via ordinal patterns transition graphs," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    10. Hu, Aihua & Cao, Jinde & Hu, Manfeng & Guo, Liuxiao, 2014. "Cluster synchronization in directed networks of non-identical systems with noises via random pinning control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 537-548.
    11. Luo, Chao & Zhang, Xiaolin & Liu, Hong & Shao, Rui, 2016. "Cooperation in memory-based prisoner’s dilemma game on interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 560-569.
    12. Wang, Jin-Fa & He, Xuan & Si, Shuai-Zong & Zhao, Hai & Zheng, Chunyang & Yu, Hao, 2019. "Using complex network theory for temporal locality in network traffic flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 722-736.
    13. Zhang, Mengyao & Huang, Tao & Guo, Zhaoxia & He, Zhenggang, 2022. "Complex-network-based traffic network analysis and dynamics: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    14. Tang, Jinjun & Wang, Yinhai & Wang, Hua & Zhang, Shen & Liu, Fang, 2014. "Dynamic analysis of traffic time series at different temporal scales: A complex networks approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 303-315.
    15. Sheikh, Muhammad Sameer & Regan, Amelia, 2022. "A complex network analysis approach for estimation and detection of traffic incidents based on independent component analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    16. Zhou, Jin & Xu, Weixiang & Guo, Xin & Liu, Xumin, 2017. "A hierarchical network modeling method for railway tunnels safety assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 226-239.
    17. Wang, Minggang & Tian, Lixin, 2016. "From time series to complex networks: The phase space coarse graining," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 456-468.
    18. Wen, Xiangxi & Tu, Congliang & Wu, Minggong & Jiang, Xurui, 2018. "Fast ranking nodes importance in complex networks based on LS-SVM method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 11-23.
    19. Yuhong Li & Guanghong Gong & Ni Li, 2018. "A parallel adaptive quantum genetic algorithm for the controllability of arbitrary networks," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-23, March.
    20. Xin, Qi & Fu, Rui & Yuan, Wei & Liu, Qingling & Yu, Shaowei, 2018. "Predictive intelligent driver model for eco-driving using upcoming traffic signal information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 806-823.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0114406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.