IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0107878.html
   My bibliography  Save this article

Contact Patterns among High School Students

Author

Listed:
  • Julie Fournet
  • Alain Barrat

Abstract

Face-to-face contacts between individuals contribute to shape social networks and play an important role in determining how infectious diseases can spread within a population. It is thus important to obtain accurate and reliable descriptions of human contact patterns occurring in various day-to-day life contexts. Recent technological advances and the development of wearable sensors able to sense proximity patterns have made it possible to gather data giving access to time-varying contact networks of individuals in specific environments. Here we present and analyze two such data sets describing with high temporal resolution the contact patterns of students in a high school. We define contact matrices describing the contact patterns between students of different classes and show the importance of the class structure. We take advantage of the fact that the two data sets were collected in the same setting during several days in two successive years to perform a longitudinal analysis on two very different timescales. We show the high stability of the contact patterns across days and across years: the statistical distributions of numbers and durations of contacts are the same in different periods, and we observe a very high similarity of the contact matrices measured in different days or different years. The rate of change of the contacts of each individual from one day to the next is also similar in different years. We discuss the interest of the present analysis and data sets for various fields, including in social sciences in order to better understand and model human behavior and interactions in different contexts, and in epidemiology in order to inform models describing the spread of infectious diseases and design targeted containment strategies.

Suggested Citation

  • Julie Fournet & Alain Barrat, 2014. "Contact Patterns among High School Students," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-17, September.
  • Handle: RePEc:plo:pone00:0107878
    DOI: 10.1371/journal.pone.0107878
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0107878
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0107878&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0107878?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joël Mossong & Niel Hens & Mark Jit & Philippe Beutels & Kari Auranen & Rafael Mikolajczyk & Marco Massari & Stefania Salmaso & Gianpaolo Scalia Tomba & Jacco Wallinga & Janneke Heijne & Malgorzata Sa, 2008. "Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases," PLOS Medicine, Public Library of Science, vol. 5(3), pages 1-1, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Mingwu & Dankowicz, Harry, 2019. "Impact of temporal network structures on the speed of consensus formation in opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1355-1370.
    2. Mitja Steinbacher & Matthias Raddant & Fariba Karimi & Eva Camacho Cuena & Simone Alfarano & Giulia Iori & Thomas Lux, 2021. "Advances in the agent-based modeling of economic and social behavior," SN Business & Economics, Springer, vol. 1(7), pages 1-24, July.
    3. Bi, Jialin & Jin, Ji & Qu, Cunquan & Zhan, Xiuxiu & Wang, Guanghui & Yan, Guiying, 2021. "Temporal gravity model for important node identification in temporal networks," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    4. Liu, Kang & Yin, Ling & Ma, Zhanwu & Zhang, Fan & Zhao, Juanjuan, 2020. "Investigating physical encounters of individuals in urban metro systems with large-scale smart card data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    5. Rauf Ahmed Shams Malick & Syed Kashir Hasan & Fahad Samad & Nadeem Kafi Khan & Hassan Jamil Syed, 2023. "Smart Methods to Deal with COVID-19 at University-Level Institutions Using Social Network Analysis Techniques," Sustainability, MDPI, vol. 15(6), pages 1-17, March.
    6. Mattia Mazzoli & Riccardo Gallotti & Filippo Privitera & Pere Colet & José J. Ramasco, 2023. "Spatial immunization to abate disease spreading in transportation hubs," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Funel, Agostino, 2022. "A method to compute the communicability of nodes through causal paths in temporal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    8. Aming Li & Yang-Yu Liu, 2020. "Controlling Network Dynamics," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(07n08), pages 1-19, February.
    9. Gail E. Potter & Nicole Bohme Carnegie & Jonathan D. Sugimoto & Aldiouma Diallo & John C. Victor & Kathleen M. Neuzil & M. Elizabeth Halloran, 2022. "Using social contact data to improve the overall effect estimate of a cluster‐randomized influenza vaccination program in Senegal," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(1), pages 70-90, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ichino, Andrea & Favero, Carlo A. & Rustichini, Aldo, 2020. "Restarting the economy while saving lives under Covid-19," CEPR Discussion Papers 14664, C.E.P.R. Discussion Papers.
    2. M. Hashem Pesaran & Cynthia Fan Yang, 2022. "Matching theory and evidence on Covid‐19 using a stochastic network SIR model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1204-1229, September.
    3. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    4. Houštecká, Anna & Koh, Dongya & Santaeulàlia-Llopis, Raül, 2021. "Contagion at work: Occupations, industries and human contact," Journal of Public Economics, Elsevier, vol. 200(C).
    5. Kuchler, Theresa & Russel, Dominic & Stroebel, Johannes, 2022. "JUE Insight: The geographic spread of COVID-19 correlates with the structure of social networks as measured by Facebook," Journal of Urban Economics, Elsevier, vol. 127(C).
    6. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    7. S. M. Niaz Arifin & Christoph Zimmer & Caroline Trotter & Anaïs Colombini & Fati Sidikou & F. Marc LaForce & Ted Cohen & Reza Yaesoubi, 2019. "Cost-Effectiveness of Alternative Uses of Polyvalent Meningococcal Vaccines in Niger: An Agent-Based Transmission Modeling Study," Medical Decision Making, , vol. 39(5), pages 553-567, July.
    8. Bisin, Alberto & Moro, Andrea, 2022. "Spatial‐SIR with network structure and behavior: Lockdown rules and the Lucas critique," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 370-388.
    9. Mirjam Kretzschmar & Rafael T Mikolajczyk, 2009. "Contact Profiles in Eight European Countries and Implications for Modelling the Spread of Airborne Infectious Diseases," PLOS ONE, Public Library of Science, vol. 4(6), pages 1-8, June.
    10. Andrei I. Vlad & Alexei A. Romanyukha & Tatiana E. Sannikova, 2024. "Parameter Tuning of Agent-Based Models: Metaheuristic Algorithms," Mathematics, MDPI, vol. 12(14), pages 1-21, July.
    11. Elisabetta De Cao & Alessia Melegaro & Rogier Klok & Maarten Postma, 2014. "Optimising Assessments of the Epidemiological Impact in the Netherlands of Paediatric Immunisation with 13-Valent Pneumococcal Conjugate Vaccine Using Dynamic Transmission Modelling," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-9, April.
    12. Gillis, Melissa & Urban, Ryley & Saif, Ahmed & Kamal, Noreen & Murphy, Matthew, 2021. "A simulation–optimization framework for optimizing response strategies to epidemics," Operations Research Perspectives, Elsevier, vol. 8(C).
    13. Richard Pitman & David Fisman & Gregory S. Zaric & Maarten Postma & Mirjam Kretzschmar & John Edmunds & Marc Brisson, 2012. "Dynamic Transmission Modeling," Medical Decision Making, , vol. 32(5), pages 712-721, September.
    14. Wiriya Mahikul & Somkid Kripattanapong & Piya Hanvoravongchai & Aronrag Meeyai & Sopon Iamsirithaworn & Prasert Auewarakul & Wirichada Pan-ngum, 2020. "Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand," IJERPH, MDPI, vol. 17(7), pages 1-11, March.
    15. Valentina Marziano & Giorgio Guzzetta & Alessia Mammone & Flavia Riccardo & Piero Poletti & Filippo Trentini & Mattia Manica & Andrea Siddu & Antonino Bella & Paola Stefanelli & Patrizio Pezzotti & Ma, 2021. "The effect of COVID-19 vaccination in Italy and perspectives for living with the virus," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    16. Fatima-Zahra Jaouimaa & Daniel Dempsey & Suzanne Van Osch & Stephen Kinsella & Kevin Burke & Jason Wyse & James Sweeney, 2021. "An age-structured SEIR model for COVID-19 incidence in Dublin, Ireland with framework for evaluating health intervention cost," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-25, December.
    17. Nikolaos P. Rachaniotis & Thomas K. Dasaklis & Filippos Fotopoulos & Platon Tinios, 2021. "A Two-Phase Stochastic Dynamic Model for COVID-19 Mid-Term Policy Recommendations in Greece: A Pathway towards Mass Vaccination," IJERPH, MDPI, vol. 18(5), pages 1-21, March.
    18. Hammoumi, Aayah & Qesmi, Redouane, 2020. "Impact assessment of containment measure against COVID-19 spread in Morocco," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    19. Thomas Ash & Antonio M. Bento & Daniel Kaffine & Akhil Rao & Ana I. Bento, 2022. "Disease-economy trade-offs under alternative epidemic control strategies," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    20. Sudhir Venkatesan & Jonathan S Nguyen-Van-Tam & Peer-Olaf Siebers, 2019. "A novel framework for evaluating the impact of individual decision-making on public health outcomes and its potential application to study antiviral treatment collection during an influenza pandemic," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-14, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0107878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.