Author
Listed:
- Anneke S de Vos
- Wilma A Stolk
- Sake J de Vlas
- Luc E Coffeng
Abstract
Background: Stable low pre-control prevalences of helminth infection are not uncommon in field settings, yet it is poorly understood how such low levels can be sustained, thereby challenging efforts to model them. Disentangling possible facilitating mechanisms is important, since these may differently affect intervention impact. Here we explore the role of assortative (i.e. non-homogenous) mixing and exposure heterogeneity in helminth transmission, using onchocerciasis as an example. Methodology/Principal findings: We extended the established individual-based model ONCHOSIM to allow for assortative mixing, assuming that individuals who are relatively more exposed to fly bites are more connected to each other than other individuals in the population as a result of differential exposure to a sub-population of blackflies. We used the model to investigate how transmission stability, equilibrium microfilarial (mf) prevalence and intensity, and impact of mass drug administration depend on the assumed degree of assortative mixing and exposure heterogeneity, for a typical rural population of about 400 individuals. The model clearly demonstrated that with homogeneous mixing and moderate levels of exposure heterogeneity, onchocerciasis could not be sustained below 35% mf prevalence. In contrast, assortative mixing stabilised onchocerciasis prevalence at levels as low as 8% mf prevalence. Increasing levels of assortative mixing significantly reduced the probability of interrupting transmission, given the same duration and coverage of mass drug administration. Conclusions/Significance: Assortative mixing patterns are an important factor to explain stable low prevalence situations and are highly relevant for prospects of elimination. Their effect on the pre-control distribution of mf intensities in human populations is only detectable in settings with mf prevalences
Suggested Citation
Anneke S de Vos & Wilma A Stolk & Sake J de Vlas & Luc E Coffeng, 2018.
"The effect of assortative mixing on stability of low helminth transmission levels and on the impact of mass drug administration: Model explorations for onchocerciasis,"
PLOS Neglected Tropical Diseases, Public Library of Science, vol. 12(10), pages 1-15, October.
Handle:
RePEc:plo:pntd00:0006624
DOI: 10.1371/journal.pntd.0006624
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0006624. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.