IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0107056.html
   My bibliography  Save this article

Link Prediction in Complex Networks: A Mutual Information Perspective

Author

Listed:
  • Fei Tan
  • Yongxiang Xia
  • Boyao Zhu

Abstract

Topological properties of networks are widely applied to study the link-prediction problem recently. Common Neighbors, for example, is a natural yet efficient framework. Many variants of Common Neighbors have been thus proposed to further boost the discriminative resolution of candidate links. In this paper, we reexamine the role of network topology in predicting missing links from the perspective of information theory, and present a practical approach based on the mutual information of network structures. It not only can improve the prediction accuracy substantially, but also experiences reasonable computing complexity.

Suggested Citation

  • Fei Tan & Yongxiang Xia & Boyao Zhu, 2014. "Link Prediction in Complex Networks: A Mutual Information Perspective," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-8, September.
  • Handle: RePEc:plo:pone00:0107056
    DOI: 10.1371/journal.pone.0107056
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0107056
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0107056&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0107056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Liben‐Nowell & Jon Kleinberg, 2007. "The link‐prediction problem for social networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(7), pages 1019-1031, May.
    2. Qian-Ming Zhang & Linyuan Lü & Wen-Qiang Wang & Yu-Xiao & Tao Zhou, 2013. "Potential Theory for Directed Networks," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-8, February.
    3. H. Jeong & B. Tombor & R. Albert & Z. N. Oltvai & A.-L. Barabási, 2000. "The large-scale organization of metabolic networks," Nature, Nature, vol. 407(6804), pages 651-654, October.
    4. Aaron Clauset & Cristopher Moore & M. E. J. Newman, 2008. "Hierarchical structure and the prediction of missing links in networks," Nature, Nature, vol. 453(7191), pages 98-101, May.
    5. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huaylla, Claudia A. & Kuperman, Marcelo N. & Garibaldi, Lucas A., 2024. "Comparison of two statistical measures of complexity applied to ecological bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    2. Zhang, Xuejun & Pang, Wenbo & Xia, Yongxiang, 2018. "An intermediary probability model for link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 902-912.
    3. Kumar, Ajay & Singh, Shashank Sheshar & Singh, Kuldeep & Biswas, Bhaskar, 2020. "Link prediction techniques, applications, and performance: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    4. Shakibian, Hadi & Charkari, Nasrollah Moghadam, 2018. "Statistical similarity measures for link prediction in heterogeneous complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 248-263.
    5. Charikhi, Mourad, 2024. "Association of the PageRank algorithm with similarity-based methods for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    6. Yao, Yabing & Zhang, Ruisheng & Yang, Fan & Tang, Jianxin & Yuan, Yongna & Hu, Rongjing, 2018. "Link prediction in complex networks based on the interactions among paths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 52-67.
    7. Chi, Kuo & Qu, Hui & Yin, Guisheng, 2022. "Link prediction for existing links in dynamic networks based on the attraction force," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    8. Pei, Panpan & Liu, Bo & Jiao, Licheng, 2017. "Link prediction in complex networks based on an information allocation index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 1-11.
    9. Namika Makhija & Shashank Mouli Satapathy, 2021. "Community detection in dynamic networks: a comprehensive and comparative review using external and internal criteria," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(2), pages 217-230, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guan-Nan Wang & Hui Gao & Lian Chen & Dennis N A Mensah & Yan Fu, 2015. "Predicting Positive and Negative Relationships in Large Social Networks," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-14, June.
    2. Park, Ji Hwan & Chang, Woojin & Song, Jae Wook, 2020. "Link prediction in the Granger causality network of the global currency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    3. Wang, Jun & Zhang, Qian-Ming & Zhou, Tao, 2019. "Tag-aware link prediction algorithm in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 105-111.
    4. Aslan, Serpil & Kaya, Buket & Kaya, Mehmet, 2019. "Predicting potential links by using strengthened projections in evolving bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 998-1011.
    5. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Wang, Zuxi & Wu, Yao & Li, Qingguang & Jin, Fengdong & Xiong, Wei, 2016. "Link prediction based on hyperbolic mapping with community structure for complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 609-623.
    7. Lee, Yan-Li & Zhou, Tao, 2021. "Collaborative filtering approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    8. Liu, Zhenfeng & Feng, Jian & Uden, Lorna, 2023. "Technology opportunity analysis using hierarchical semantic networks and dual link prediction," Technovation, Elsevier, vol. 128(C).
    9. Zhou, Tao & Lee, Yan-Li & Wang, Guannan, 2021. "Experimental analyses on 2-hop-based and 3-hop-based link prediction algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    10. Wang, Xiaojie & Zhang, Xue & Zhao, Chengli & Xie, Zheng & Zhang, Shengjun & Yi, Dongyun, 2015. "Predicting link directions using local directed path," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 260-267.
    11. Bhattacharjee, Biplab & Kumar, Rajiv & Senthilkumar, Arunachalam, 2022. "Unidirectional and bidirectional LSTM models for edge weight predictions in dynamic cross-market equity networks," International Review of Financial Analysis, Elsevier, vol. 84(C).
    12. Yueran Duan & Qing Guan, 2021. "Predicting potential knowledge convergence of solar energy: bibliometric analysis based on link prediction model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 3749-3773, May.
    13. Mingyu Nan & Yifan Zhu & Jie Zhang & Tao Wang & Xin Zhou, 2022. "MSGWO-MKL-SVM: A Missing Link Prediction Method for UAV Swarm Network Based on Time Series," Mathematics, MDPI, vol. 10(14), pages 1-29, July.
    14. Lee, Yan-Li & Dong, Qiang & Zhou, Tao, 2021. "Link prediction via controlling the leading eigenvector," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    15. Jiao, Yang & Wu, Jianshe & Xiang, Peng & Wang, Fang, 2023. "Link prediction from fusion information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    16. Chungmok Lee & Minh Pham & Myong K. Jeong & Dohyun Kim & Dennis K. J. Lin & Wanpracha Art Chavalitwongse, 2015. "A Network Structural Approach to the Link Prediction Problem," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 249-267, May.
    17. Orzechowski, Kamil P. & Mrowinski, Maciej J. & Fronczak, Agata & Fronczak, Piotr, 2023. "Asymmetry of social interactions and its role in link predictability: The case of coauthorship networks," Journal of Informetrics, Elsevier, vol. 17(2).
    18. Huang, Lu & Chen, Xiang & Ni, Xingxing & Liu, Jiarun & Cao, Xiaoli & Wang, Changtian, 2021. "Tracking the dynamics of co-word networks for emerging topic identification," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    19. Liu, Yangyang & Zhao, Chengli & Wang, Xiaojie & Huang, Qiangjuan & Zhang, Xue & Yi, Dongyun, 2016. "The degree-related clustering coefficient and its application to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 24-33.
    20. Chen, Xing & Wu, Tao & Xian, Xingping & Wang, Chao & Yuan, Ye & Ming, Guannan, 2020. "Enhancing robustness of link prediction for noisy complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0107056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.