IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0055437.html
   My bibliography  Save this article

Potential Theory for Directed Networks

Author

Listed:
  • Qian-Ming Zhang
  • Linyuan Lü
  • Wen-Qiang Wang
  • Yu-Xiao
  • Tao Zhou

Abstract

Uncovering factors underlying the network formation is a long-standing challenge for data mining and network analysis. In particular, the microscopic organizing principles of directed networks are less understood than those of undirected networks. This article proposes a hypothesis named potential theory, which assumes that every directed link corresponds to a decrease of a unit potential and subgraphs with definable potential values for all nodes are preferred. Combining the potential theory with the clustering and homophily mechanisms, it is deduced that the Bi-fan structure consisting of 4 nodes and 4 directed links is the most favored local structure in directed networks. Our hypothesis receives strongly positive supports from extensive experiments on 15 directed networks drawn from disparate fields, as indicated by the most accurate and robust performance of Bi-fan predictor within the link prediction framework. In summary, our main contribution is twofold: (i) We propose a new mechanism for the local organization of directed networks; (ii) We design the corresponding link prediction algorithm, which can not only testify our hypothesis, but also find out direct applications in missing link prediction and friendship recommendation.

Suggested Citation

  • Qian-Ming Zhang & Linyuan Lü & Wen-Qiang Wang & Yu-Xiao & Tao Zhou, 2013. "Potential Theory for Directed Networks," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-8, February.
  • Handle: RePEc:plo:pone00:0055437
    DOI: 10.1371/journal.pone.0055437
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0055437
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0055437&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0055437?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xiaojie & Zhang, Xue & Zhao, Chengli & Xie, Zheng & Zhang, Shengjun & Yi, Dongyun, 2015. "Predicting link directions using local directed path," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 260-267.
    2. Bo Ouyang & Lurong Jiang & Zhaosheng Teng, 2016. "A Noise-Filtering Method for Link Prediction in Complex Networks," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-12, January.
    3. Liu, Yangyang & Zhao, Chengli & Wang, Xiaojie & Huang, Qiangjuan & Zhang, Xue & Yi, Dongyun, 2016. "The degree-related clustering coefficient and its application to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 24-33.
    4. Wang, Jun & Zhang, Qian-Ming & Zhou, Tao, 2019. "Tag-aware link prediction algorithm in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 105-111.
    5. Fei Tan & Yongxiang Xia & Boyao Zhu, 2014. "Link Prediction in Complex Networks: A Mutual Information Perspective," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-8, September.
    6. Ding, Jingyi & Jiao, Licheng & Wu, Jianshe & Hou, Yunting & Qi, Yutao, 2015. "Prediction of missing links based on multi-resolution community division," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 417(C), pages 76-85.
    7. Kumar, Ajay & Singh, Shashank Sheshar & Singh, Kuldeep & Biswas, Bhaskar, 2020. "Link prediction techniques, applications, and performance: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    8. Park, Ji Hwan & Chang, Woojin & Song, Jae Wook, 2020. "Link prediction in the Granger causality network of the global currency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    9. Wang, Zuxi & Wu, Yao & Li, Qingguang & Jin, Fengdong & Xiong, Wei, 2016. "Link prediction based on hyperbolic mapping with community structure for complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 609-623.
    10. Pei, Panpan & Liu, Bo & Jiao, Licheng, 2017. "Link prediction in complex networks based on an information allocation index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 1-11.
    11. Guan-Nan Wang & Hui Gao & Lian Chen & Dennis N A Mensah & Yan Fu, 2015. "Predicting Positive and Negative Relationships in Large Social Networks," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-14, June.
    12. Shenshen Bai & Longjie Li & Jianjun Cheng & Shijin Xu & Xiaoyun Chen, 2018. "Predicting Missing Links Based on a New Triangle Structure," Complexity, Hindawi, vol. 2018, pages 1-11, December.
    13. Orzechowski, Kamil P. & Mrowinski, Maciej J. & Fronczak, Agata & Fronczak, Piotr, 2023. "Asymmetry of social interactions and its role in link predictability: The case of coauthorship networks," Journal of Informetrics, Elsevier, vol. 17(2).
    14. Liu, Dong & Liu, Xiao & Wang, Wenjun & Bai, Hongyu, 2014. "Semi-supervised community detection based on discrete potential theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 173-182.
    15. Hedayatifar, L. & Hassanibesheli, F. & Shirazi, A.H. & Vasheghani Farahani, S. & Jafari, G.R., 2017. "Pseudo paths towards minimum energy states in network dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 109-116.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0055437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.