IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0106479.html
   My bibliography  Save this article

De-Novo Learning of Genome-Scale Regulatory Networks in S. cerevisiae

Author

Listed:
  • Sisi Ma
  • Patrick Kemmeren
  • David Gresham
  • Alexander Statnikov

Abstract

De-novo reverse-engineering of genome-scale regulatory networks is a fundamental problem of biological and translational research. One of the major obstacles in developing and evaluating approaches for de-novo gene network reconstruction is the absence of high-quality genome-scale gold-standard networks of direct regulatory interactions. To establish a foundation for assessing the accuracy of de-novo gene network reverse-engineering, we constructed high-quality genome-scale gold-standard networks of direct regulatory interactions in Saccharomyces cerevisiae that incorporate binding and gene knockout data. Then we used 7 performance metrics to assess accuracy of 18 statistical association-based approaches for de-novo network reverse-engineering in 13 different datasets spanning over 4 data types. We found that most reconstructed networks had statistically significant accuracies. We also determined which statistical approaches and datasets/data types lead to networks with better reconstruction accuracies. While we found that de-novo reverse-engineering of the entire network is a challenging problem, it is possible to reconstruct sub-networks around some transcription factors with good accuracy. The latter transcription factors can be identified by assessing their connectivity in the inferred networks. Overall, this study provides the gene network reverse-engineering community with a rigorous assessment of the accuracy of S. cerevisiae gene network reconstruction and variability in performance of various approaches for learning both the entire network and sub-networks around transcription factors.

Suggested Citation

  • Sisi Ma & Patrick Kemmeren & David Gresham & Alexander Statnikov, 2014. "De-Novo Learning of Genome-Scale Regulatory Networks in S. cerevisiae," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-20, September.
  • Handle: RePEc:plo:pone00:0106479
    DOI: 10.1371/journal.pone.0106479
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0106479
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0106479&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0106479?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Smyth Gordon K, 2004. "Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-28, February.
    2. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    3. Sims, Christopher A, 1972. "Money, Income, and Causality," American Economic Review, American Economic Association, vol. 62(4), pages 540-552, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ajmal Hamda B. & Madden Michael G., 2020. "Inferring dynamic gene regulatory networks with low-order conditional independencies – an evaluation of the method," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 19(4-6), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. KAMKOUM, Arnaud Cedric, 2023. "The Federal Reserve’s Response to the Global Financial Crisis and its Effects: An Interrupted Time-Series Analysis of the Impact of its Quantitative Easing Programs," Thesis Commons d7pvg, Center for Open Science.
    2. Zamani, Mehrzad, 2007. "Energy consumption and economic activities in Iran," Energy Economics, Elsevier, vol. 29(6), pages 1135-1140, November.
    3. Alberto Fuertes & Simón Sosvilla-Rivero, 2019. "“Forecasting emerging market currencies: Are inflation expectations useful?”," IREA Working Papers 201918, University of Barcelona, Research Institute of Applied Economics, revised Oct 2019.
    4. Gossé, Jean-Baptiste & Guillaumin, Cyriac, 2013. "L’apport de la représentation VAR de Christopher A. Sims à la science économique," L'Actualité Economique, Société Canadienne de Science Economique, vol. 89(4), pages 309-319, Décembre.
    5. Kathryn M. Dominguez, 1991. "Do Exchange Auctions Work? An Examination of the Bolivian Experience," NBER Working Papers 3683, National Bureau of Economic Research, Inc.
    6. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    7. Nishiyama, Yoshihiko & Hitomi, Kohtaro & Kawasaki, Yoshinori & Jeong, Kiho, 2011. "A consistent nonparametric test for nonlinear causality—Specification in time series regression," Journal of Econometrics, Elsevier, vol. 165(1), pages 112-127.
    8. Bashiri Behmiri, Niaz & Pires Manso, José R., 2012. "Does Portuguese economy support crude oil conservation hypothesis?," Energy Policy, Elsevier, vol. 45(C), pages 628-634.
    9. Nour Wehbe & Bassam Assaf & Salem Darwich, 2018. "Étude de causalité entre la consommation d’électricité et la croissance économique au Liban," Post-Print hal-01944291, HAL.
    10. Nidhal Mgadmi & Houssem Rachdi & Hichem Saidi & Khaled Guesmi, 2019. "On the Instability of Tunisian Money Demand: Some Empirical Issues with Structural Breaks," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(1), pages 153-165, March.
    11. Panayiotis C. Afxentiou & Apostolos Serletis, 1991. "A Time-Series Analysis of the Relationship Between Government Expenditure and Gdp in Canada," Public Finance Review, , vol. 19(3), pages 316-333, July.
    12. Zapata, Hector O. & Gil, Jose M., 1999. "Cointegration and causality in international agricultural economics research," Agricultural Economics, Blackwell, vol. 20(1), pages 1-9, January.
    13. Bernd Hayo, 1999. "Money-output Granger causality revisited: an empirical analysis of EU countries," Applied Economics, Taylor & Francis Journals, vol. 31(11), pages 1489-1501.
    14. Andersson, Björn, 1999. "On the Causality Between Saving and Growth: Long- and Short-Run Dynamics and Country Heterogeneity," Working Paper Series 1999:18, Uppsala University, Department of Economics.
    15. Tomasz Woźniak, 2016. "Bayesian Vector Autoregressions," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 49(3), pages 365-380, September.
    16. James J. Heckman, 2008. "Econometric Causality," International Statistical Review, International Statistical Institute, vol. 76(1), pages 1-27, April.
    17. Paul A. Anderson, 1979. "A test of the exogeneity of national variables in a regional econometric model," Working Papers 124, Federal Reserve Bank of Minneapolis.
    18. Dawson, John W., 2003. "Causality in the freedom-growth relationship," European Journal of Political Economy, Elsevier, vol. 19(3), pages 479-495, September.
    19. John Geweke & Joel Horowitz & M. Hashem Pesaran, 2006. "Econometrics: A Bird’s Eye View," CESifo Working Paper Series 1870, CESifo.
    20. Lien, Donald & Yang, Li, 2003. "Contract settlement specification and price discovery: Empirical evidence in Australia individual share futures market," International Review of Economics & Finance, Elsevier, vol. 12(4), pages 495-512.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0106479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.