IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0102507.html
   My bibliography  Save this article

Population Dynamics of a Salmonella Lytic Phage and Its Host: Implications of the Host Bacterial Growth Rate in Modelling

Author

Listed:
  • Sílvio B Santos
  • Carla Carvalho
  • Joana Azeredo
  • Eugénio C Ferreira

Abstract

The prevalence and impact of bacteriophages in the ecology of bacterial communities coupled with their ability to control pathogens turn essential to understand and predict the dynamics between phage and bacteria populations. To achieve this knowledge it is essential to develop mathematical models able to explain and simulate the population dynamics of phage and bacteria. We have developed an unstructured mathematical model using delay-differential equations to predict the interactions between a broad-host-range Salmonella phage and its pathogenic host. The model takes into consideration the main biological parameters that rule phage-bacteria interactions likewise the adsorption rate, latent period, burst size, bacterial growth rate, and substrate uptake rate, among others. The experimental validation of the model was performed with data from phage-interaction studies in a 5 L bioreactor. The key and innovative aspect of the model was the introduction of variations in the latent period and adsorption rate values that are considered as constants in previous developed models. By modelling the latent period as a normal distribution of values and the adsorption rate as a function of the bacterial growth rate it was possible to accurately predict the behaviour of the phage-bacteria population. The model was shown to predict simulated data with a good agreement with the experimental observations and explains how a lytic phage and its host bacteria are able to coexist.

Suggested Citation

  • Sílvio B Santos & Carla Carvalho & Joana Azeredo & Eugénio C Ferreira, 2014. "Population Dynamics of a Salmonella Lytic Phage and Its Host: Implications of the Host Bacterial Growth Rate in Modelling," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-15, July.
  • Handle: RePEc:plo:pone00:0102507
    DOI: 10.1371/journal.pone.0102507
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0102507
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0102507&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0102507?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jed A. Fuhrman, 1999. "Marine viruses and their biogeochemical and ecological effects," Nature, Nature, vol. 399(6736), pages 541-548, June.
    2. Benjamin J Cairns & Andrew R Timms & Vincent A A Jansen & Ian F Connerton & Robert J H Payne, 2009. "Quantitative Models of In Vitro Bacteriophage–Host Dynamics and Their Application to Phage Therapy," PLOS Pathogens, Public Library of Science, vol. 5(1), pages 1-10, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keller, David P. & Hood, Raleigh R., 2011. "Modeling the seasonal autochthonous sources of dissolved organic carbon and nitrogen in the upper Chesapeake Bay," Ecological Modelling, Elsevier, vol. 222(5), pages 1139-1162.
    2. Xiaomei Feng & Yuan Miao & Shulin Sun & Lei Wang, 2022. "Dynamic Behaviors of a Stochastic Eco-Epidemiological Model for Viral Infection in the Toxin-Producing Phytoplankton and Zooplankton System," Mathematics, MDPI, vol. 10(8), pages 1-18, April.
    3. Yuanmin Sun & Kunxian Tang & Hui Song & Degang Jiang & Shan Chen & Wulin Tu & Luchun Cai & Haiping Huang & Fei Zhang, 2022. "The Effect of Domestic Sewage Treatment on Islands Using Ecological Treatment Processes: A Case Study of Haimen Island, Fujian Province," IJERPH, MDPI, vol. 19(23), pages 1-12, November.
    4. Sun, Zhe & Zhou, Zhi, 2019. "Nature-inspired virus-assisted algal cell disruption for cost-effective biofuel production," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Yang Huang & Hui Sun & Shuzhen Wei & Lanlan Cai & Liqin Liu & Yanan Jiang & Jiabao Xin & Zhenqin Chen & Yuqiong Que & Zhibo Kong & Tingting Li & Hai Yu & Jun Zhang & Ying Gu & Qingbing Zheng & Shaowei, 2023. "Structure and proposed DNA delivery mechanism of a marine roseophage," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Juan A. Bonachela, 2024. "Viral plasticity facilitates host diversity in challenging environments," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Stephen J. Beckett & David Demory & Ashley R. Coenen & John R. Casey & Mathilde Dugenne & Christopher L. Follett & Paige Connell & Michael C. G. Carlson & Sarah K. Hu & Samuel T. Wilson & Daniel Murat, 2024. "Disentangling top-down drivers of mortality underlying diel population dynamics of Prochlorococcus in the North Pacific Subtropical Gyre," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Yuxuan Du & Jed A. Fuhrman & Fengzhu Sun, 2023. "ViralCC retrieves complete viral genomes and virus-host pairs from metagenomic Hi-C data," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Yantao Liang & Li Li & Tingwei Luo & Yao Zhang & Rui Zhang & Nianzhi Jiao, 2014. "Horizontal and Vertical Distribution of Marine Virioplankton: A Basin Scale Investigation Based on a Global Cruise," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-11, November.
    10. Chen, Ming & Gao, Honghui & Zhang, Jimin, 2024. "Dynamic modeling of lytic virus transmission among phytoplankton driven by nitrogen and phosphorus," Ecological Modelling, Elsevier, vol. 496(C).
    11. Gonçalo J. Piedade & Max E. Schön & Cédric Lood & Mikhail V. Fofanov & Ella M. Wesdorp & Tristan E. G. Biggs & Lingyi Wu & Henk Bolhuis & Matthias G. Fischer & Natalya Yutin & Bas E. Dutilh & Corina P, 2024. "Seasonal dynamics and diversity of Antarctic marine viruses reveal a novel viral seascape," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Patrick Arthofer & Florian Panhölzl & Vincent Delafont & Alban Hay & Siegfried Reipert & Norbert Cyran & Stefanie Wienkoop & Anouk Willemsen & Ines Sifaoui & Iñigo Arberas-Jiménez & Frederik Schulz & , 2024. "A giant virus infecting the amoeboflagellate Naegleria," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Smeti, Evangelia & Roelke, Daniel L. & Tsirtsis, George & Spatharis, Sofie, 2018. "Species extinctions strengthen the relationship between biodiversity and resource use efficiency," Ecological Modelling, Elsevier, vol. 384(C), pages 75-86.
    14. Krishna, Shubham & Peterson, Victoria & Listmann, Luisa & Hinners, Jana, 2024. "Interactive effects of viral lysis and warming in a coastal ocean identified from an idealized ecosystem model," Ecological Modelling, Elsevier, vol. 487(C).
    15. Christian Winter & Jérôme P Payet & Curtis A Suttle, 2012. "Modeling the Winter–to–Summer Transition of Prokaryotic and Viral Abundance in the Arctic Ocean," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0102507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.