IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1310.7018.html
   My bibliography  Save this paper

Stock returns versus trading volume: is the correspondence more general?

Author

Listed:
  • Rafal Rak
  • Stanislaw Drozdz
  • Jaroslaw Kwapien
  • Pawel Oswiecimka

Abstract

This paper presents a quantitative analysis of the relationship between the stock market returns and corresponding trading volumes using high- frequency data from the Polish stock market. First, for stocks that were traded for suffciently long period of time, we study the return and volume distributions and identify their consistency with the power-law functions. We find that, for majority of stocks, the scaling exponents of both distri- butions are systematically related by about a factor of 2 with the ones for the returns being larger. Second, we study the empirical price impact of trades of a given volume and find that this impact can be well described by a square-root dependence: r(V) V^(1/2). We conclude that the prop- erties of data from the Polish market resemble those reported in literature concerning certain mature markets.

Suggested Citation

  • Rafal Rak & Stanislaw Drozdz & Jaroslaw Kwapien & Pawel Oswiecimka, 2013. "Stock returns versus trading volume: is the correspondence more general?," Papers 1310.7018, arXiv.org.
  • Handle: RePEc:arx:papers:1310.7018
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1310.7018
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gontis, V. & Havlin, S. & Kononovicius, A. & Podobnik, B. & Stanley, H.E., 2016. "Stochastic model of financial markets reproducing scaling and memory in volatility return intervals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1091-1102.
    2. Wu, Ting & Wang, Yue & Li, Ming-Xia, 2017. "Post-hit dynamics of price limit hits in the Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 464-471.
    3. Aleksejus Kononovicius & Vygintas Gontis, 2014. "Herding interactions as an opportunity to prevent extreme events in financial markets," Papers 1409.8024, arXiv.org, revised May 2015.
    4. Marcin Wk{a}torek & Jaros{l}aw Kwapie'n & Stanis{l}aw Dro.zd.z, 2021. "Financial Return Distributions: Past, Present, and COVID-19," Papers 2107.06659, arXiv.org.
    5. Li, Ming-Xia & Jiang, Zhi-Qiang & Xie, Wen-Jie & Xiong, Xiong & Zhang, Wei & Zhou, Wei-Xing, 2015. "Unveiling correlations between financial variables and topological metrics of trading networks: Evidence from a stock and its warrant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 575-584.
    6. Mali, Provash & Mukhopadhyay, Amitabha, 2014. "Multifractal characterization of gold market: A multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 361-372.
    7. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    8. Gontis, V. & Kononovicius, A., 2017. "Burst and inter-burst duration statistics as empirical test of long-range memory in the financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 266-272.
    9. Vygintas Gontis & Aleksejus Kononovicius, 2014. "Consentaneous Agent-Based and Stochastic Model of the Financial Markets," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-12, July.
    10. Wang, Gang-Jin & Xie, Chi & He, Ling-Yun & Chen, Shou, 2014. "Detrended minimum-variance hedge ratio: A new method for hedge ratio at different time scales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 70-79.
    11. Hasan, Rashid & Mohammed Salim, M., 2017. "Power law cross-correlations between price change and volume change of Indian stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 620-631.
    12. Aleksejus Kononovicius & Julius Ruseckas, 2018. "Order book model with herd behavior exhibiting long-range memory," Papers 1809.02772, arXiv.org, revised Apr 2019.
    13. Kononovicius, Aleksejus & Ruseckas, Julius, 2019. "Order book model with herd behavior exhibiting long-range memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 171-191.
    14. Rytis Kazakevicius & Aleksejus Kononovicius & Bronislovas Kaulakys & Vygintas Gontis, 2021. "Understanding the nature of the long-range memory phenomenon in socioeconomic systems," Papers 2108.02506, arXiv.org, revised Aug 2021.
    15. Zheng, Zeyu & Gui, Jun & Qiao, Zhi & Fu, Yang & Stanley, H.Eugene & Li, Baowen, 2019. "New dynamics between volume and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1343-1350.
    16. Vygintas Gontis & Shlomo Havlin & Aleksejus Kononovicius & Boris Podobnik & H. Eugene Stanley, 2015. "Stochastic model of financial markets reproducing scaling and memory in volatility return intervals," Papers 1507.05203, arXiv.org, revised Oct 2016.
    17. Rodriguez, E. & Alvarez-Ramirez, J., 2021. "Time-varying cross-correlation between trading volume and returns in US stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    18. Gontis, V. & Kononovicius, A., 2018. "The consentaneous model of the financial markets exhibiting spurious nature of long-range memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 1075-1083.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1310.7018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.