IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v29y2024i3d10.1007_s13253-023-00581-y.html
   My bibliography  Save this article

Predicting the Temperature-Driven Development of Stage-Structured Insect Populations with a Bayesian Hierarchical Model

Author

Listed:
  • Kala Studens

    (Great Lakes Forestry Centre)

  • Benjamin M. Bolker

    (McMaster University)

  • Jean-Noël Candau

    (Great Lakes Forestry Centre)

Abstract

The management of forest pests relies on an accurate understanding of the species’ phenology. Thermal performance curves (TPCs) have traditionally been used to model insect phenology. Many such models have been proposed and fitted to data from both wild and laboratory-reared populations. Using Hamiltonian Monte Carlo for estimation, we implement and fit an individual-level, Bayesian hierarchical model of insect development to the observed larval stage durations of a population reared in a laboratory at constant temperatures. This hierarchical model handles interval censoring and temperature transfers between two constant temperatures during rearing. It also incorporates individual variation, quadratic variation in development rates across insects’ larval stages, and “flexibility” parameters that allow for deviations from a parametric TPC. Using a Bayesian method ensures a proper propagation of parameter uncertainty into predictions and provides insights into the model at hand. The model is applied to a population of eastern spruce budworm (Choristoneura fumiferana) reared at 7 constant temperatures. Resulting posterior distributions can be incorporated into a workflow that provides prediction intervals for the timing of life stages under different temperature regimes. We provide a basic example for the spruce budworm using a year of hourly temperature data from Timmins, Ontario, Canada. Supplementary materials accompanying this paper appear on-line.

Suggested Citation

  • Kala Studens & Benjamin M. Bolker & Jean-Noël Candau, 2024. "Predicting the Temperature-Driven Development of Stage-Structured Insect Populations with a Bayesian Hierarchical Model," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 536-552, September.
  • Handle: RePEc:spr:jagbes:v:29:y:2024:i:3:d:10.1007_s13253-023-00581-y
    DOI: 10.1007/s13253-023-00581-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-023-00581-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-023-00581-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cole C Monnahan & Kasper Kristensen, 2018. "No-U-turn sampling for fast Bayesian inference in ADMB and TMB: Introducing the adnuts and tmbstan R packages," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-10, May.
    2. Ross Corkrey & June Olley & David Ratkowsky & Tom McMeekin & Tom Ross, 2012. "Universality of Thermodynamic Constants Governing Biological Growth Rates," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-8, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aaron Osgood‐Zimmerman & Jon Wakefield, 2023. "A Statistical Review of Template Model Builder: A Flexible Tool for Spatial Modelling," International Statistical Review, International Statistical Institute, vol. 91(2), pages 318-342, August.
    2. Dimitrios - Georgios Kontopoulos & Arnaud Sentis & Martin Daufresne & Natalia Glazman & Anthony I. Dell & Samraat Pawar, 2024. "No universal mathematical model for thermal performance curves across traits and taxonomic groups," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Ross Corkrey & Tom A McMeekin & John P Bowman & David A Ratkowsky & June Olley & Tom Ross, 2014. "Protein Thermodynamics Can Be Predicted Directly from Biological Growth Rates," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-15, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:29:y:2024:i:3:d:10.1007_s13253-023-00581-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.