IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0090798.html
   My bibliography  Save this article

Shape Information in Repeated Glucose Curves during Pregnancy Provided Significant Physiological Information for Neonatal Outcomes

Author

Listed:
  • Kathrine Frey Frøslie
  • Jo Røislien
  • Elisabeth Qvigstad
  • Kristin Godang
  • Jens Bollerslev
  • Tore Henriksen
  • Marit B Veierød

Abstract

Objective: To use multilevel functional principal component analysis to exploit the information inherent in the shape of longitudinally sampled glucose curves during pregnancy, and to analyse the impact of glucose curve characteristics on neonatal birth weight, percentage fat and cord blood C-peptide. Study Design and Setting: A cohort study of healthy, pregnant women (n = 884). They underwent two oral glucose tolerance tests (gestational weeks 14–16 and 30–32), which gave two glucose curves per woman. Results: Glucose values were higher, and peaked later in third trimester than in early pregnancy. The curve characteristic “general glucose level” accounted for 91% of the variation across visits, and 72% within visits. The curve characteristics “timing of postprandial peak”, and “oscillating glucose levels” accounted for a larger part of the variation within visits (15% and 8%), than across visits (7% and

Suggested Citation

  • Kathrine Frey Frøslie & Jo Røislien & Elisabeth Qvigstad & Kristin Godang & Jens Bollerslev & Tore Henriksen & Marit B Veierød, 2014. "Shape Information in Repeated Glucose Curves during Pregnancy Provided Significant Physiological Information for Neonatal Outcomes," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-10, March.
  • Handle: RePEc:plo:pone00:0090798
    DOI: 10.1371/journal.pone.0090798
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0090798
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0090798&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0090798?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Crainiceanu, Ciprian M. & Goldsmith, A. Jeffrey, 2010. "Bayesian Functional Data Analysis Using WinBUGS," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i11).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Kan & Luo, Sheng, 2019. "Bayesian functional joint models for multivariate longitudinal and time-to-event data," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 14-29.
    2. Eve Bohnett & Jessica Schulz & Robert Dobbs & Thomas Hoctor & Dave Hulse & Bilal Ahmad & Wajid Rashid & Hardin Waddle, 2023. "Shorebird Monitoring Using Spatially Explicit Occupancy and Abundance," Land, MDPI, vol. 12(4), pages 1-15, April.
    3. Agnese Maria Di Brisco & Enea Giuseppe Bongiorno & Aldo Goia & Sonia Migliorati, 2023. "Bayesian flexible beta regression model with functional covariate," Computational Statistics, Springer, vol. 38(2), pages 623-645, June.
    4. Shang, Han Lin & Smith, Peter W.F. & Bijak, Jakub & Wiśniowski, Arkadiusz, 2016. "A multilevel functional data method for forecasting population, with an application to the United Kingdom," International Journal of Forecasting, Elsevier, vol. 32(3), pages 629-649.
    5. Codazzi, Laura & Colombi, Alessandro & Gianella, Matteo & Argiento, Raffaele & Paci, Lucia & Pini, Alessia, 2022. "Gaussian graphical modeling for spectrometric data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    6. Febrero-Bande, Manuel & de la Fuente, Manuel Oviedo, 2012. "Statistical Computing in Functional Data Analysis: The R Package fda.usc," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i04).
    7. Guodong Shan & Yiheng Hou & Baisen Liu, 2020. "Bayesian robust estimation of partially functional linear regression models using heavy-tailed distributions," Computational Statistics, Springer, vol. 35(4), pages 2077-2092, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0090798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.