IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v431y2004i7006d10.1038_nature02782.html
   My bibliography  Save this article

Genomic analysis of regulatory network dynamics reveals large topological changes

Author

Listed:
  • Nicholas M. Luscombe

    (Yale University)

  • M. Madan Babu

    (MRC Laboratory of Molecular Biology)

  • Haiyuan Yu

    (Yale University)

  • Michael Snyder

    (Yale University)

  • Sarah A. Teichmann

    (MRC Laboratory of Molecular Biology)

  • Mark Gerstein

    (Yale University
    Yale University)

Abstract

Network analysis has been applied widely, providing a unifying language to describe disparate systems ranging from social interactions to power grids. It has recently been used in molecular biology, but so far the resulting networks have only been analysed statically1,2,3,4,5,6,7,8. Here we present the dynamics of a biological network on a genomic scale, by integrating transcriptional regulatory information9,10,11 and gene-expression data12,13,14,15,16 for multiple conditions in Saccharomyces cerevisiae. We develop an approach for the statistical analysis of network dynamics, called SANDY, combining well-known global topological measures, local motifs and newly derived statistics. We uncover large changes in underlying network architecture that are unexpected given current viewpoints and random simulations. In response to diverse stimuli, transcription factors alter their interactions to varying degrees, thereby rewiring the network. A few transcription factors serve as permanent hubs, but most act transiently only during certain conditions. By studying sub-network structures, we show that environmental responses facilitate fast signal propagation (for example, with short regulatory cascades), whereas the cell cycle and sporulation direct temporal progression through multiple stages (for example, with highly inter-connected transcription factors). Indeed, to drive the latter processes forward, phase-specific transcription factors inter-regulate serially, and ubiquitously active transcription factors layer above them in a two-tiered hierarchy. We anticipate that many of the concepts presented here—particularly the large-scale topological changes and hub transience—will apply to other biological networks, including complex sub-systems in higher eukaryotes.

Suggested Citation

  • Nicholas M. Luscombe & M. Madan Babu & Haiyuan Yu & Michael Snyder & Sarah A. Teichmann & Mark Gerstein, 2004. "Genomic analysis of regulatory network dynamics reveals large topological changes," Nature, Nature, vol. 431(7006), pages 308-312, September.
  • Handle: RePEc:nat:nature:v:431:y:2004:i:7006:d:10.1038_nature02782
    DOI: 10.1038/nature02782
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02782
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02782?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seyed Yahya Anvar & Allan Tucker & Veronica Vinciotti & Andrea Venema & Gert-Jan B van Ommen & Silvere M van der Maarel & Vered Raz & Peter A C ‘t Hoen, 2011. "Interspecies Translation of Disease Networks Increases Robustness and Predictive Accuracy," PLOS Computational Biology, Public Library of Science, vol. 7(11), pages 1-14, November.
    2. Manikandan Narayanan & Adrian Vetta & Eric E Schadt & Jun Zhu, 2010. "Simultaneous Clustering of Multiple Gene Expression and Physical Interaction Datasets," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-13, April.
    3. Zhen Yang & Yen‐Yi Ho, 2022. "Modeling dynamic correlation in zero‐inflated bivariate count data with applications to single‐cell RNA sequencing data," Biometrics, The International Biometric Society, vol. 78(2), pages 766-776, June.
    4. Liu, Suling & Xu, Qiong & Chen, Aimin & Wang, Pei, 2020. "Structural controllability of dynamic transcriptional regulatory networks for Saccharomyces cerevisiae," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    5. Jeremiah J Faith & Boris Hayete & Joshua T Thaden & Ilaria Mogno & Jamey Wierzbowski & Guillaume Cottarel & Simon Kasif & James J Collins & Timothy S Gardner, 2007. "Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles," PLOS Biology, Public Library of Science, vol. 5(1), pages 1-13, January.
    6. Tuomo Mäki-Marttunen & Juha Kesseli & Matti Nykter, 2013. "Balance between Noise and Information Flow Maximizes Set Complexity of Network Dynamics," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-10, March.
    7. Xiaoke Ma & Long Gao & Georgios Karamanlidis & Peng Gao & Chi Fung Lee & Lorena Garcia-Menendez & Rong Tian & Kai Tan, 2015. "Revealing Pathway Dynamics in Heart Diseases by Analyzing Multiple Differential Networks," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-19, June.
    8. Jie Xiong & Tong Zhou, 2013. "A Kalman-Filter Based Approach to Identification of Time-Varying Gene Regulatory Networks," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-8, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:431:y:2004:i:7006:d:10.1038_nature02782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.