IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0073700.html
   My bibliography  Save this article

FAS-1377 G/A (rs2234767) Polymorphism and Cancer Susceptibility: A Meta-Analysis of 17,858 Cases and 24,311 Controls

Author

Listed:
  • Zhou Zhong-Xing
  • Mi Yuan-Yuan
  • Ma Hai Zhen
  • Zou Jian-Gang
  • Zhang Li-Feng

Abstract

Background and Objectives: Disruption of apoptosis has been implicated in carcinogenesis. Specifically, various single-nucleotide polymorphisms (SNPs) in apoptotic genes, such as FAS-1377 G/A SNP, have been associated with cancer risk. FAS-1377 G/A SNP has been shown to alter FAS gene promoter transcriptional activity. Down-regulation of FAS and cell death resistance is key to many cancers, but an association between FAS-1377 G/A SNP and cancer risk is uncertain. Therefore, we conducted a meta-analysis of the current literature to clarify this relationship. Methodology/Principal Findings: From PubMed and Chinese language (CNKI and WanFang) databases, we located articles published up to March 5, 2013, obtaining 44 case-control studies from 41 different articles containing 17,858 cases and 24,311 controls based on search criteria for cancer susceptibility related to the FAS gene -1377 G/A SNP. Odds ratios (ORs) and 95% confidence intervals (CI) revealed association strengths. Data show that the -1377 G allele was protective against cancer risk. Similar associations were detected in “source of control,” ethnicity and cancer type subgroups. Lower cancer risk was found in both smokers with a GG+GA genotype and in non-smokers with the GG+GA genotype, when compared to smokers and nonsmokers with the AA genotype. Males carrying the -1377G allele (GG+GA) had lower cancer incidence than those with the AA genotype. Individuals who carried both FAS-1377(GG+GA)/FASL-844(TT+TC) genotypes appeared to have lower risk of cancer than those who carried both FAS-1377 AA/FASL-844 CC genotypes. Conclusions/Significance: The FAS-1377 G/A SNP may decrease cancer risk. Studies with larger samples to study gene-environment interactions are warranted to understand the role of FAS gene polymorphisms, especially -1377 G/A SNP, in cancer risk.

Suggested Citation

  • Zhou Zhong-Xing & Mi Yuan-Yuan & Ma Hai Zhen & Zou Jian-Gang & Zhang Li-Feng, 2013. "FAS-1377 G/A (rs2234767) Polymorphism and Cancer Susceptibility: A Meta-Analysis of 17,858 Cases and 24,311 Controls," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-1, August.
  • Handle: RePEc:plo:pone00:0073700
    DOI: 10.1371/journal.pone.0073700
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0073700
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0073700&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0073700?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gerard I. Evan & Karen H. Vousden, 2001. "Proliferation, cell cycle and apoptosis in cancer," Nature, Nature, vol. 411(6835), pages 342-348, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Menchón, S.A. & Condat, C.A., 2011. "Quiescent cells: A natural way to resist chemotherapy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3354-3361.
    2. Yongzhi Yang & Feng Wang & Chenzhang Shi & Yang Zou & Huanlong Qin & Yanlei Ma, 2012. "Cyclin D1 G870A Polymorphism Contributes to Colorectal Cancer Susceptibility: Evidence from a Systematic Review of 22 Case-Control Studies," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-9, May.
    3. Song Zhang & Qianyi Xiao & Zhuqing Shi & Guopeng Yu & Xiao-Pin Ma & Haitao Chen & Pengyin Zhang & Suqin Shen & He-Xi Ge Sai-Yin & Tao-Yang Chen & Pei-Xin Lu & Neng-Jin Wang & Weihua Ren & Peng Huang &, 2017. "Caspase polymorphisms and prognosis of hepatocellular carcinoma," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-13, April.
    4. Yi Fu & Robert Kunz & Jianhua Wu & Cheng Dong, 2012. "Study of Local Hydrodynamic Environment in Cell-Substrate Adhesion Using Side-View μPIV Technology," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-13, February.
    5. Sukanya Panja & Mihai Ioan Truica & Christina Y. Yu & Vamshi Saggurthi & Michael W. Craige & Katie Whitehead & Mayra V. Tuiche & Aymen Al-Saadi & Riddhi Vyas & Shridar Ganesan & Suril Gohel & Frederic, 2024. "Mechanism-centric regulatory network identifies NME2 and MYC programs as markers of Enzalutamide resistance in CRPC," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    6. Neha Pal & Shalini Rathore & Priya Kaushik & Swati Tyagi & Abhimanyu Kumar Jha & Anshuman Kumar, 2019. "Promoter Hypermethylation of Apoptotic genes in Oral Squamous Cell Carcinoma," Cancer Therapy & Oncology International Journal, Juniper Publishers Inc., vol. 13(5), pages 103-108, May.
    7. Jae-Woong Min & Woo Jin Kim & Jeong A Han & Yu-Jin Jung & Kyu-Tae Kim & Woong-Yang Park & Hae-Ock Lee & Sun Shim Choi, 2015. "Identification of Distinct Tumor Subpopulations in Lung Adenocarcinoma via Single-Cell RNA-seq," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-17, August.
    8. Lei Xu & Xin Zhou & Feng Jiang & Man-Tang Qiu & Zhi Zhang & Rong Yin & Lin Xu, 2013. "FASL rs763110 Polymorphism Contributes to Cancer Risk: An Updated Meta-Analysis Involving 43,295 Subjects," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-9, September.
    9. Anthony Szedlak & Spencer Sims & Nicholas Smith & Giovanni Paternostro & Carlo Piermarocchi, 2017. "Cell cycle time series gene expression data encoded as cyclic attractors in Hopfield systems," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-19, November.
    10. W. Frank Lenoir & Micaela Morgado & Peter C. DeWeirdt & Megan McLaughlin & Audrey L. Griffith & Annabel K. Sangree & Marissa N. Feeley & Nazanin Esmaeili Anvar & Eiru Kim & Lori L. Bertolet & Medina C, 2021. "Discovery of putative tumor suppressors from CRISPR screens reveals rewired lipid metabolism in acute myeloid leukemia cells," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    11. David A Knowles & Gina Bouchard & Sylvia Plevritis, 2019. "Sparse discriminative latent characteristics for predicting cancer drug sensitivity from genomic features," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-18, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0073700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.