IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0069226.html
   My bibliography  Save this article

A Linkage Disequilibrium–Based Approach to Selecting Disease-Associated Rare Variants

Author

Listed:
  • Rajesh Talluri
  • Sanjay Shete

Abstract

Rare variants have increasingly been cited as major contributors in the disease etiology of several complex disorders. Recently, several approaches have been proposed for analyzing the association of rare variants with disease. These approaches include collapsing rare variants, summing rare variant test statistics within a particular locus to improve power, and selecting a subset of rare variants for association testing, e.g., the step-up approach. We found that (a) if the variants being pooled are in linkage disequilibrium, the standard step-up method of selecting the best subset of variants results in loss of power compared to a model that pools all rare variants and (b) if the variants are in linkage equilibrium, performing a subset selection using step-based selection methods results in a gain of power of association compared to a model that pools all rare variants. Therefore, we propose an approach to selecting the best subset of variants to include in the model that is based on the linkage disequilibrium pattern among the rare variants. The proposed linkage disequilibrium–based variant selection model is flexible and borrows strength from the model that pools all rare variants when the rare variants are in linkage disequilibrium and from step-based selection methods when the variants are in linkage equilibrium. We performed simulations under three different realistic scenarios based on: (1) the HapMap3 dataset of the DRD2 gene, and CHRNA3/A5/B4 gene cluster (2) the block structure of linkage disequilibrium, and (3) linkage equilibrium. We proposed a permutation-based approach to control the type 1 error rate. The power comparisons after controlling the type 1 error show that the proposed linkage disequilibrium–based subset selection approach is an attractive alternative method for subset selection of rare variants.

Suggested Citation

  • Rajesh Talluri & Sanjay Shete, 2013. "A Linkage Disequilibrium–Based Approach to Selecting Disease-Associated Rare Variants," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-6, July.
  • Handle: RePEc:plo:pone00:0069226
    DOI: 10.1371/journal.pone.0069226
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0069226
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0069226&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0069226?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas J Hoffmann & Nicholas J Marini & John S Witte, 2010. "Comprehensive Approach to Analyzing Rare Genetic Variants," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-9, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nanye Long & Samuel P Dickson & Jessica M Maia & Hee Shin Kim & Qianqian Zhu & Andrew S Allen, 2013. "Leveraging Prior Information to Detect Causal Variants via Multi-Variant Regression," PLOS Computational Biology, Public Library of Science, vol. 9(6), pages 1-11, June.
    2. Gourab De & Wai-Ki Yip & Iuliana Ionita-Laza & Nan Laird, 2013. "Rare Variant Analysis for Family-Based Design," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-9, January.
    3. Rachel Marceau West & Wenbin Lu & Daniel M Rotroff & Melaine A Kuenemann & Sheng-Mao Chang & Michael C Wu & Michael J Wagner & John B Buse & Alison A Motsinger-Reif & Denis Fourches & Jung-Ying Tzeng, 2019. "Identifying individual risk rare variants using protein structure guided local tests (POINT)," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-24, February.
    4. Timothy D O’Connor & Adam Kiezun & Michael Bamshad & Stephen S Rich & Joshua D Smith & Emily Turner & NHLBIGO Exome Sequencing Project & ESP Population Genetics, Statistical Analysis Working Group & S, 2013. "Fine-Scale Patterns of Population Stratification Confound Rare Variant Association Tests," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-10, July.
    5. Daniel D Kinnamon & Ray E Hershberger & Eden R Martin, 2012. "Reconsidering Association Testing Methods Using Single-Variant Test Statistics as Alternatives to Pooling Tests for Sequence Data with Rare Variants," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-15, February.
    6. Yi Nengjun & Xu Shizhong & Lou Xiang-Yang & Mallick Himel, 2014. "Multiple comparisons in genetic association studies: a hierarchical modeling approach," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(1), pages 35-48, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0069226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.