IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0048495.html
   My bibliography  Save this article

Rare Variant Analysis for Family-Based Design

Author

Listed:
  • Gourab De
  • Wai-Ki Yip
  • Iuliana Ionita-Laza
  • Nan Laird

Abstract

Genome-wide association studies have been able to identify disease associations with many common variants; however most of the estimated genetic contribution explained by these variants appears to be very modest. Rare variants are thought to have larger effect sizes compared to common SNPs but effects of rare variants cannot be tested in the GWAS setting. Here we propose a novel method to test for association of rare variants obtained by sequencing in family-based samples by collapsing the standard family-based association test (FBAT) statistic over a region of interest. We also propose a suitable weighting scheme so that low frequency SNPs that may be enriched in functional variants can be upweighted compared to common variants. Using simulations we show that the family-based methods perform at par with the population-based methods under no population stratification. By construction, family-based tests are completely robust to population stratification; we show that our proposed methods remain valid even when population stratification is present.

Suggested Citation

  • Gourab De & Wai-Ki Yip & Iuliana Ionita-Laza & Nan Laird, 2013. "Rare Variant Analysis for Family-Based Design," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-9, January.
  • Handle: RePEc:plo:pone00:0048495
    DOI: 10.1371/journal.pone.0048495
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0048495
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0048495&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0048495?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas J Hoffmann & Nicholas J Marini & John S Witte, 2010. "Comprehensive Approach to Analyzing Rare Genetic Variants," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-9, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anshuman Sewda & A J Agopian & Elizabeth Goldmuntz & Hakon Hakonarson & Bernice E Morrow & Deanne Taylor & Laura E Mitchell & on behalf of the Pediatric Cardiac Genomics Consortium, 2019. "Gene-based genome-wide association studies and meta-analyses of conotruncal heart defects," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-19, July.
    2. Wenjing Qi & Andrew S Allen & Yi-Ju Li, 2019. "Family-based association tests for rare variants with censored traits," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajesh Talluri & Sanjay Shete, 2013. "A Linkage Disequilibrium–Based Approach to Selecting Disease-Associated Rare Variants," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-6, July.
    2. Nanye Long & Samuel P Dickson & Jessica M Maia & Hee Shin Kim & Qianqian Zhu & Andrew S Allen, 2013. "Leveraging Prior Information to Detect Causal Variants via Multi-Variant Regression," PLOS Computational Biology, Public Library of Science, vol. 9(6), pages 1-11, June.
    3. Rachel Marceau West & Wenbin Lu & Daniel M Rotroff & Melaine A Kuenemann & Sheng-Mao Chang & Michael C Wu & Michael J Wagner & John B Buse & Alison A Motsinger-Reif & Denis Fourches & Jung-Ying Tzeng, 2019. "Identifying individual risk rare variants using protein structure guided local tests (POINT)," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-24, February.
    4. Timothy D O’Connor & Adam Kiezun & Michael Bamshad & Stephen S Rich & Joshua D Smith & Emily Turner & NHLBIGO Exome Sequencing Project & ESP Population Genetics, Statistical Analysis Working Group & S, 2013. "Fine-Scale Patterns of Population Stratification Confound Rare Variant Association Tests," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-10, July.
    5. Daniel D Kinnamon & Ray E Hershberger & Eden R Martin, 2012. "Reconsidering Association Testing Methods Using Single-Variant Test Statistics as Alternatives to Pooling Tests for Sequence Data with Rare Variants," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-15, February.
    6. Yi Nengjun & Xu Shizhong & Lou Xiang-Yang & Mallick Himel, 2014. "Multiple comparisons in genetic association studies: a hierarchical modeling approach," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(1), pages 35-48, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0048495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.