IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0056277.html
   My bibliography  Save this article

Modeling the Building Blocks of Biodiversity

Author

Listed:
  • Lucas N Joppa
  • Rich Williams

Abstract

Background: Networks of single interaction types, such as plant-pollinator mutualisms, are biodiversity’s “building blocks”. Yet, the structure of mutualistic and antagonistic networks differs, leaving no unified modeling framework across biodiversity’s component pieces. Methods/Principal Findings: We use a one-dimensional “niche model” to predict antagonistic and mutualistic species interactions, finding that accuracy decreases with the size of the network. We show that properties of the modeled network structure closely approximate empirical properties even where individual interactions are poorly predicted. Further, some aspects of the structure of the niche space were consistently different between network classes. Conclusions/Significance: These novel results reveal fundamental differences between the ability to predict ecologically important features of the overall structure of a network and the ability to predict pair-wise species interactions.

Suggested Citation

  • Lucas N Joppa & Rich Williams, 2013. "Modeling the Building Blocks of Biodiversity," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-11, February.
  • Handle: RePEc:plo:pone00:0056277
    DOI: 10.1371/journal.pone.0056277
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0056277
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0056277&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0056277?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard J. Williams & Neo D. Martinez, 2000. "Simple rules yield complex food webs," Nature, Nature, vol. 404(6774), pages 180-183, March.
    2. Serguei Saavedra & Felix Reed-Tsochas & Brian Uzzi, 2009. "A simple model of bipartite cooperation for ecological and organizational networks," Nature, Nature, vol. 457(7228), pages 463-466, January.
    3. José M. Montoya & Stuart L. Pimm & Ricard V. Solé, 2006. "Ecological networks and their fragility," Nature, Nature, vol. 442(7100), pages 259-264, July.
    4. Mark E. Torchin & Kevin D. Lafferty & Andrew P. Dobson & Valerie J. McKenzie & Armand M. Kuris, 2003. "Introduced species and their missing parasites," Nature, Nature, vol. 421(6923), pages 628-630, February.
    5. Charles E. Mitchell & Alison G. Power, 2003. "Release of invasive plants from fungal and viral pathogens," Nature, Nature, vol. 421(6923), pages 625-627, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabine Dritz & Rebecca A. Nelson & Fernanda S. Valdovinos, 2023. "The role of intra-guild indirect interactions in assembling plant-pollinator networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Canelas, Joana Viana & Pereira, Henrique Miguel, 2022. "Impacts of land-use intensity on ecosystems stability," Ecological Modelling, Elsevier, vol. 472(C).
    3. Chengyi Tu & Joel Carr & Samir Suweis, 2016. "A data driven network approach to rank countries production diversity and food specialization," Papers 1606.01270, arXiv.org.
    4. Chengyi Tu & Joel Carr & Samir Suweis, 2016. "A Data Driven Network Approach to Rank Countries Production Diversity and Food Specialization," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-15, November.
    5. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    6. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    7. Fath, Brian D. & Halnes, Geir, 2007. "Cyclic energy pathways in ecological food webs," Ecological Modelling, Elsevier, vol. 208(1), pages 17-24.
    8. Robert N. Reed, 2005. "An Ecological Risk Assessment of Nonnative Boas and Pythons as Potentially Invasive Species in the United States," Risk Analysis, John Wiley & Sons, vol. 25(3), pages 753-766, June.
    9. Michel Alexandre & Felipe Jordão Xavier & Thiago Christiano Silva & Francisco A. Rodrigues, 2022. "Nestedness in the Brazilian Financial System," Working Papers Series 566, Central Bank of Brazil, Research Department.
    10. Jihui Han & Wei Li & Longfeng Zhao & Zhu Su & Yijiang Zou & Weibing Deng, 2017. "Community detection in dynamic networks via adaptive label propagation," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-16, November.
    11. Zechen Wang & Zhenqin Shi & Jingeng Huo & Wenbo Zhu & Yanhui Yan & Na Ding, 2023. "Construction and Optimization of an Ecological Network in Funiu Mountain Area Based on MSPA and MCR Models, China," Land, MDPI, vol. 12(8), pages 1-13, August.
    12. Liu, Yan & Mei, Jingling & Li, Wenxue, 2018. "Stochastic stabilization problem of complex networks without strong connectedness," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 304-315.
    13. Anna C. Peterson & Himanshu Sharma & Arvind Kumar & Bruno M. Ghersi & Scott J. Emrich & Kurt J. Vandegrift & Amit Kapoor & Michael J. Blum, 2021. "Rodent Virus Diversity and Differentiation across Post-Katrina New Orleans," Sustainability, MDPI, vol. 13(14), pages 1-18, July.
    14. Xiaolong Lin & Zongmu Yao & Xinguang Wang & Shangqi Xu & Chunjie Tian & Lei Tian, 2021. "Water-Covered Depth with the Freeze–Thaw Cycle Influences Fungal Communities on Rice Straw Decomposition," Agriculture, MDPI, vol. 11(11), pages 1-16, November.
    15. Huaylla, Claudia A. & Kuperman, Marcelo N. & Garibaldi, Lucas A., 2024. "Comparison of two statistical measures of complexity applied to ecological bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    16. Nonaka, Etsuko & Kuparinen, Anna, 2023. "Limited effects of size-selective harvesting and harvesting-induced life-history changes on the temporal variability of biomass dynamics in complex food webs," Ecological Modelling, Elsevier, vol. 476(C).
    17. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    18. Victor Boussange & Didier Sornette & Heike Lischke & Loic Pellissier, 2023. "Processes analogous to ecological interactions and dispersal shape the dynamics of economic activities," Papers 2301.09486, arXiv.org.
    19. Dina in ‘t Zandt & Zuzana Kolaříková & Tomáš Cajthaml & Zuzana Münzbergová, 2023. "Plant community stability is associated with a decoupling of prokaryote and fungal soil networks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Bellingeri, Michele & Cassi, Davide & Vincenzi, Simone, 2013. "Increasing the extinction risk of highly connected species causes a sharp robust-to-fragile transition in empirical food webs," Ecological Modelling, Elsevier, vol. 251(C), pages 1-8.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0056277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.