IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0051274.html
   My bibliography  Save this article

Curli Functional Amyloid Systems Are Phylogenetically Widespread and Display Large Diversity in Operon and Protein Structure

Author

Listed:
  • Morten S Dueholm
  • Mads Albertsen
  • Daniel Otzen
  • Per Halkjær Nielsen

Abstract

Escherichia coli and a few other members of the Enterobacteriales can produce functional amyloids known as curli. These extracellular fibrils are involved in biofilm formation and studies have shown that they may act as virulence factors during infections. It is not known whether curli fibrils are restricted to the Enterobacteriales or if they are phylogenetically widespread. The growing number of genome-sequenced bacteria spanning many phylogenetic groups allows a reliable bioinformatic investigation of the phylogenetic diversity of the curli system. Here we show that the curli system is phylogenetically much more widespread than initially assumed, spanning at least four phyla. Curli fibrils may consequently be encountered frequently in environmental as well as pathogenic biofilms, which was supported by identification of curli genes in public metagenomes from a diverse range of habitats. Identification and comparison of curli subunit (CsgA/B) homologs show that these proteins allow a high degree of freedom in their primary protein structure, although a modular structure of tightly spaced repeat regions containing conserved glutamine, asparagine and glycine residues has to be preserved. In addition, a high degree of variability within the operon structure of curli subunits between bacterial taxa suggests that the curli fibrils might have evolved to fulfill specific functions. Variations in the genetic organization of curli genes are also seen among different bacterial genera. This suggests that some genera may utilize alternative regulatory pathways for curli expression. Comparison of phylogenetic trees of Csg proteins and the 16S rRNA genes of the corresponding bacteria showed remarkably similar overall topography, suggesting that horizontal gene transfer is a minor player in the spreading of the curli system.

Suggested Citation

  • Morten S Dueholm & Mads Albertsen & Daniel Otzen & Per Halkjær Nielsen, 2012. "Curli Functional Amyloid Systems Are Phylogenetically Widespread and Display Large Diversity in Operon and Protein Structure," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-10, December.
  • Handle: RePEc:plo:pone00:0051274
    DOI: 10.1371/journal.pone.0051274
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0051274
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0051274&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0051274?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christopher M. Dobson, 2003. "Protein folding and misfolding," Nature, Nature, vol. 426(6968), pages 884-890, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zachary D. Wallen & Ayse Demirkan & Guy Twa & Gwendolyn Cohen & Marissa N. Dean & David G. Standaert & Timothy R. Sampson & Haydeh Payami, 2022. "Metagenomics of Parkinson’s disease implicates the gut microbiome in multiple disease mechanisms," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    2. Ariadna Fernández-Calvet & Leticia Matilla-Cuenca & María Izco & Susanna Navarro & Miriam Serrano & Salvador Ventura & Javier Blesa & Maite Herráiz & Gorka Alkorta-Aranburu & Sergio Galera & Igor Ruiz, 2024. "Gut microbiota produces biofilm-associated amyloids with potential for neurodegeneration," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    3. Mike Sleutel & Brajabandhu Pradhan & Alexander N. Volkov & Han Remaut, 2023. "Structural analysis and architectural principles of the bacterial amyloid curli," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Fischbach & Angela Johns & Kara L. Schneider & Xinxin Hao & Peter Tessarz & Thomas Nyström, 2023. "Artificial Hsp104-mediated systems for re-localizing protein aggregates," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Corina N. D’Alessandro-Gabazza & Taro Yasuma & Tetsu Kobayashi & Masaaki Toda & Ahmed M. Abdel-Hamid & Hajime Fujimoto & Osamu Hataji & Hiroki Nakahara & Atsuro Takeshita & Kota Nishihama & Tomohito O, 2022. "Inhibition of lung microbiota-derived proapoptotic peptides ameliorates acute exacerbation of pulmonary fibrosis," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    3. Kübra Kaygisiz & Lena Rauch-Wirth & Arghya Dutta & Xiaoqing Yu & Yuki Nagata & Tristan Bereau & Jan Münch & Christopher V. Synatschke & Tanja Weil, 2023. "Data-mining unveils structure–property–activity correlation of viral infectivity enhancing self-assembling peptides," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Jian Tian & Jaie C Woodard & Anna Whitney & Eugene I Shakhnovich, 2015. "Thermal Stabilization of Dihydrofolate Reductase Using Monte Carlo Unfolding Simulations and Its Functional Consequences," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-27, April.
    5. Matthias M. Schneider & Saurabh Gautam & Therese W. Herling & Ewa Andrzejewska & Georg Krainer & Alyssa M. Miller & Victoria A. Trinkaus & Quentin A. E. Peter & Francesco Simone Ruggeri & Michele Vend, 2021. "The Hsc70 disaggregation machinery removes monomer units directly from α-synuclein fibril ends," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    6. Eri Chatani & Yutaro Tsuchisaka & Yuki Masuda & Roumiana Tsenkova, 2014. "Water Molecular System Dynamics Associated with Amyloidogenic Nucleation as Revealed by Real Time Near Infrared Spectroscopy and Aquaphotomics," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-10, July.
    7. Mookyung Cheon & Iksoo Chang & Sandipan Mohanty & Leila M Luheshi & Christopher M Dobson & Michele Vendruscolo & Giorgio Favrin, 2007. "Structural Reorganisation and Potential Toxicity of Oligomeric Species Formed during the Assembly of Amyloid Fibrils," PLOS Computational Biology, Public Library of Science, vol. 3(9), pages 1-12, September.
    8. Stefan Auer & Filip Meersman & Christopher M Dobson & Michele Vendruscolo, 2008. "A Generic Mechanism of Emergence of Amyloid Protofilaments from Disordered Oligomeric Aggregates," PLOS Computational Biology, Public Library of Science, vol. 4(11), pages 1-7, November.
    9. Espinoza Ortiz, J.S. & Dias, Cristiano L., 2018. "Cooperative fibril model: Native, amyloid-like fibril and unfolded states of proteins," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 154-165.
    10. Qi Wang & Joshua L Johnson & Nathalie YR Agar & Jeffrey N Agar, 2008. "Protein Aggregation and Protein Instability Govern Familial Amyotrophic Lateral Sclerosis Patient Survival," PLOS Biology, Public Library of Science, vol. 6(7), pages 1-19, July.
    11. Morten S Dueholm & Daniel Otzen & Per Halkjær Nielsen, 2013. "Evolutionary Insight into the Functional Amyloids of the Pseudomonads," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-1, October.
    12. Sheng Chen & Anuradhika Puri & Braxton Bell & Joseph Fritsche & Hector H. Palacios & Maurie Balch & Macy L. Sprunger & Matthew K. Howard & Jeremy J. Ryan & Jessica N. Haines & Gary J. Patti & Albert A, 2024. "HTRA1 disaggregates α-synuclein amyloid fibrils and converts them into non-toxic and seeding incompetent species," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    13. Pengfei Tian & Kresten Lindorff-Larsen & Wouter Boomsma & Mogens Høgh Jensen & Daniel Erik Otzen, 2016. "A Monte Carlo Study of the Early Steps of Functional Amyloid Formation," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-18, January.
    14. Allen W Bryan Jr. & Matthew Menke & Lenore J Cowen & Susan L Lindquist & Bonnie Berger, 2009. "BETASCAN: Probable β-amyloids Identified by Pairwise Probabilistic Analysis," PLOS Computational Biology, Public Library of Science, vol. 5(3), pages 1-11, March.
    15. Sanne Abeln & Michele Vendruscolo & Christopher M Dobson & Daan Frenkel, 2014. "A Simple Lattice Model That Captures Protein Folding, Aggregation and Amyloid Formation," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-8, January.
    16. Minkoo Ahn & Tomasz Włodarski & Alkistis Mitropoulou & Sammy H. S. Chan & Haneesh Sidhu & Elena Plessa & Thomas A. Becker & Nediljko Budisa & Christopher A. Waudby & Roland Beckmann & Anaïs M. E. Cass, 2022. "Modulating co-translational protein folding by rational design and ribosome engineering," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. Guosheng Chen & Linjing Tong & Siming Huang & Shuyao Huang & Fang Zhu & Gangfeng Ouyang, 2022. "Hydrogen-bonded organic framework biomimetic entrapment allowing non-native biocatalytic activity in enzyme," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Wen-Ting Chu & Ji-Long Zhang & Qing-Chuan Zheng & Lin Chen & Hong-Xing Zhang, 2013. "Insights into the Folding and Unfolding Processes of Wild-Type and Mutated SH3 Domain by Molecular Dynamics and Replica Exchange Molecular Dynamics Simulations," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-9, May.
    19. Noah S Bieler & Tuomas P J Knowles & Daan Frenkel & Robert Vácha, 2012. "Connecting Macroscopic Observables and Microscopic Assembly Events in Amyloid Formation Using Coarse Grained Simulations," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-10, October.
    20. Jaya C Jose & Prathit Chatterjee & Neelanjana Sengupta, 2014. "Cross Dimerization of Amyloid-β and αSynuclein Proteins in Aqueous Environment: A Molecular Dynamics Simulations Study," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-13, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0051274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.