IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0044848.html
   My bibliography  Save this article

Resting-State Functional Connectivity Patterns Predict Chinese Word Reading Competency

Author

Listed:
  • Xiaosha Wang
  • Zaizhu Han
  • Yong He
  • Li Liu
  • Yanchao Bi

Abstract

Resting-state functional connectivity (RSFC) offers a novel approach to reveal the temporal synchronization of functionally related brain regions. Recent studies have identified several RSFCs whose strength was associated with reading competence in alphabetic languages. In the present study, we examined the role of intrinsic functional relations for reading a non-alphabetic language – Chinese – by correlating RSFC maps of nine Chinese reading-related seed regions and reaction time in the single-character reading task. We found that Chinese reading efficiency was positively correlated with the connection between left inferior occipital gyrus and left superior parietal lobule, between right posterior fusiform gyrus and right superior parietal lobule, and between left inferior temporal gyrus and left inferior parietal lobule. These results could not be attributed to inter-individual differences arising from the peripheral processes of the reading task such as visual input detection and articulation. The observed RSFC-reading correlation relationships are discussed in the framework of Chinese character reading, including visuospatial analyses and semantic/phonological processes.

Suggested Citation

  • Xiaosha Wang & Zaizhu Han & Yong He & Li Liu & Yanchao Bi, 2012. "Resting-State Functional Connectivity Patterns Predict Chinese Word Reading Competency," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-9, September.
  • Handle: RePEc:plo:pone00:0044848
    DOI: 10.1371/journal.pone.0044848
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0044848
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0044848&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0044848?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chaogan Yan & Dongqiang Liu & Yong He & Qihong Zou & Chaozhe Zhu & Xinian Zuo & Xiangyu Long & Yufeng Zang, 2009. "Spontaneous Brain Activity in the Default Mode Network Is Sensitive to Different Resting-State Conditions with Limited Cognitive Load," PLOS ONE, Public Library of Science, vol. 4(5), pages 1-11, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deepak Nag Ayyala & Anindya Roy & Junyong Park & Rao P. Gullapalli, 2018. "Adjusting for Confounders in Cross-correlation Analysis: an Application to Resting State Networks," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 123-150, May.
    2. Xun-Heng Wang & Lihua Li & Tao Xu & Zhongxiang Ding, 2015. "Investigating the Temporal Patterns within and between Intrinsic Connectivity Networks under Eyes-Open and Eyes-Closed Resting States: A Dynamical Functional Connectivity Study Based on Phase Synchron," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-20, October.
    3. Daniele Mascali & Mauro DiNuzzo & Tommaso Gili & Marta Moraschi & Michela Fratini & Bruno Maraviglia & Laura Serra & Marco Bozzali & Federico Giove, 2015. "Intrinsic Patterns of Coupling between Correlation and Amplitude of Low-Frequency fMRI Fluctuations Are Disrupted in Degenerative Dementia Mainly due to Functional Disconnection," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-18, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0044848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.