IDEAS home Printed from https://ideas.repec.org/a/spr/sankhb/v80y2018i1d10.1007_s13571-017-0138-x.html
   My bibliography  Save this article

Adjusting for Confounders in Cross-correlation Analysis: an Application to Resting State Networks

Author

Listed:
  • Deepak Nag Ayyala

    (Jackson Laboratory for Genomic Medicine)

  • Anindya Roy

    (University of Maryland Baltimore County)

  • Junyong Park

    (University of Maryland Baltimore County)

  • Rao P. Gullapalli

    (University of Maryland School of Medicine)

Abstract

Resting State Network (RSN) analysis investigates spontaneous brain activity when the brain is not subjected to any external stimuli. The interest in RSN analysis lies primarily in understanding the interaction between different brain regions that occur while the brain is “at rest”, i.e., not prompted by external tasks. The network of brain regions involved and their activity during the resting state has been found to be consistent across broad population and thus could be helpful in identifying aberrations in individual brains or effects of particular adverse events. Testing for functional consistency in RSN requires analysis of time series patterns for multiple time series signal emanating from the different brain regions. An approach for studying reproducibility is testing for stability in the cross-correlations function of the multiple time series signal. However, often the testing procedures do not adequately account for the temporal dependence in the signal and may lead to erroneous conclusion, particularly in the presence of confounder such as scan-to-scan and visit-to-visit variation. In this article, we develop a general paradigm for testing for such confounder in the cross-correlation analysis. Merit of the proposal is demonstrated via simulation and the proposed test is shown to have reasonable type I error and power under a variety of dependence structures for the multivariate signals. The methodology is then applied to the motivating data set involving a motor network and it is shown that unless properly controlled, confounders can significantly affect the test of reproducibility of the network. Once the analysis is adjusted for confounders, the findings reaffirm the conventional wisdom about reproducibility of RSN.

Suggested Citation

  • Deepak Nag Ayyala & Anindya Roy & Junyong Park & Rao P. Gullapalli, 2018. "Adjusting for Confounders in Cross-correlation Analysis: an Application to Resting State Networks," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 123-150, May.
  • Handle: RePEc:spr:sankhb:v:80:y:2018:i:1:d:10.1007_s13571-017-0138-x
    DOI: 10.1007/s13571-017-0138-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13571-017-0138-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13571-017-0138-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guy Melard & Marianne Paesmans & Roch Roy, 1991. "Consistent Estimation Of The Asymptotic Covariance Structure Of Multivariate Serial Correlations," Journal of Time Series Analysis, Wiley Blackwell, vol. 12(4), pages 351-361, July.
    2. S. Kullback, 1967. "On Testing Correlation Matrices," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 16(1), pages 80-85, March.
    3. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    4. Chaogan Yan & Dongqiang Liu & Yong He & Qihong Zou & Chaozhe Zhu & Xinian Zuo & Xiangyu Long & Yufeng Zang, 2009. "Spontaneous Brain Activity in the Default Mode Network Is Sensitive to Different Resting-State Conditions with Limited Cognitive Load," PLOS ONE, Public Library of Science, vol. 4(5), pages 1-11, May.
    5. Guy Melard & Marianne Paesmans & Roch Roy, 1991. "Consistent estimation of the asymptotic covariance structure of multivariate serial correlation," ULB Institutional Repository 2013/13722, ULB -- Universite Libre de Bruxelles.
    6. Yuan, Ke-Hai & Bentler, Peter M., 2000. "Inferences on Correlation Coefficients in Some Classes of Nonnormal Distributions," Journal of Multivariate Analysis, Elsevier, vol. 72(2), pages 230-248, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Mogliani, 2010. "Residual-based tests for cointegration and multiple deterministic structural breaks: A Monte Carlo study," Working Papers halshs-00564897, HAL.
    2. Cho, Guedae & Kim, MinKyoung & Koo, Won W., 2003. "Relative Agricultural Price Changes In Different Time Horizons," 2003 Annual meeting, July 27-30, Montreal, Canada 22249, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    3. Berkowitz, J. & Birgean, I. & Kilian, L., 1999. "On the Finite-Sample Accuracy of Nonparametric Resampling Algorithms for Economic Time Series," Papers 99-01, Michigan - Center for Research on Economic & Social Theory.
    4. Marcelo Fernandes & Breno Neri, 2010. "Nonparametric Entropy-Based Tests of Independence Between Stochastic Processes," Econometric Reviews, Taylor & Francis Journals, vol. 29(3), pages 276-306.
    5. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," Economics Papers 2009-W12, Economics Group, Nuffield College, University of Oxford.
    6. Antonia López Villavicencio & Josep Lluís Raymond Bara, 2006. "The short and long-run determinants of the real exchange rate in Mexico," Working Papers wpdea0606, Department of Applied Economics at Universitat Autonoma of Barcelona.
    7. Gruener Hans Peter & Hayo Bernd & Hefeker Carsten, 2009. "Unions, Wage Setting and Monetary Policy Uncertainty," The B.E. Journal of Macroeconomics, De Gruyter, vol. 9(1), pages 1-25, October.
    8. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    9. Arturo Estrella & Anthony P. Rodrigues, 1998. "Consistent covariance matrix estimation in probit models with autocorrelated errors," Staff Reports 39, Federal Reserve Bank of New York.
    10. PAUL CASHIN & C. JOHN McDERMOTT, 1998. "Are Australia's Current Account Deficits Excessive?," The Economic Record, The Economic Society of Australia, vol. 74(227), pages 346-361, December.
    11. Wagner, Martin & Wied, Dominik, 2014. "Monitoring Stationarity and Cointegration," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100386, Verein für Socialpolitik / German Economic Association.
    12. Paul Cashin & C. McDermott, 2002. "Terms of Trade Shocks and the Current Account: Evidence from Five Industrial Countries," Open Economies Review, Springer, vol. 13(3), pages 219-235, July.
    13. Hansen, Lars Peter & Heaton, John & Luttmer, Erzo G J, 1995. "Econometric Evaluation of Asset Pricing Models," The Review of Financial Studies, Society for Financial Studies, vol. 8(2), pages 237-274.
    14. Julia Reynolds & Leopold Sögner & Martin Wagner, 2021. "Deviations from Triangular Arbitrage Parity in Foreign Exchange and Bitcoin Markets," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 13(2), pages 105-146, June.
    15. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
    16. Stephen G Cecchetti & Alfonso Flores-Lagunes & Stefan Krause, 2005. "Assessing the Sources of Changes in the Volatility of Real Growth," RBA Annual Conference Volume (Discontinued), in: Christopher Kent & David Norman (ed.),The Changing Nature of the Business Cycle, Reserve Bank of Australia.
    17. Zeynel Abidin Ozdemir, 2010. "Dynamics Of Inflation, Output Growth And Their Uncertainty In The Uk: An Empirical Analysis," Manchester School, University of Manchester, vol. 78(6), pages 511-537, December.
    18. Vasco Gabriel, 2003. "Tests for the Null Hypothesis of Cointegration: A Monte Carlo Comparison," Econometric Reviews, Taylor & Francis Journals, vol. 22(4), pages 411-435.
    19. Hoga, Yannick, 2017. "Monitoring multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 105-121.
    20. Alberto Fuertes, 2022. "External adjustment with a common currency: the case of the euro area," Empirical Economics, Springer, vol. 62(5), pages 2205-2238, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:80:y:2018:i:1:d:10.1007_s13571-017-0138-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.