IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0040599.html
   My bibliography  Save this article

Using a Data-Constrained Model of Home Range Establishment to Predict Abundance in Spatially Heterogeneous Habitats

Author

Listed:
  • Mark C Vanderwel
  • Jay R Malcolm
  • John P Caspersen

Abstract

Mechanistic modelling approaches that explicitly translate from individual-scale resource selection to the distribution and abundance of a larger population may be better suited to predicting responses to spatially heterogeneous habitat alteration than commonly-used regression models. We developed an individual-based model of home range establishment that, given a mapped distribution of local habitat values, estimates species abundance by simulating the number and position of viable home ranges that can be maintained across a spatially heterogeneous area. We estimated parameters for this model from data on red-backed vole (Myodes gapperi) abundances in 31 boreal forest sites in Ontario, Canada. The home range model had considerably more support from these data than both non-spatial regression models based on the same original habitat variables and a mean-abundance null model. It had nearly equivalent support to a non-spatial regression model that, like the home range model, scaled an aggregate measure of habitat value from local associations with habitat resources. The home range and habitat-value regression models gave similar predictions for vole abundance under simulations of light- and moderate-intensity partial forest harvesting, but the home range model predicted lower abundances than the regression model under high-intensity disturbance. Empirical regression-based approaches for predicting species abundance may overlook processes that affect habitat use by individuals, and often extrapolate poorly to novel habitat conditions. Mechanistic home range models that can be parameterized against abundance data from different habitats permit appropriate scaling from individual- to population-level habitat relationships, and can potentially provide better insights into responses to disturbance.

Suggested Citation

  • Mark C Vanderwel & Jay R Malcolm & John P Caspersen, 2012. "Using a Data-Constrained Model of Home Range Establishment to Predict Abundance in Spatially Heterogeneous Habitats," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-11, July.
  • Handle: RePEc:plo:pone00:0040599
    DOI: 10.1371/journal.pone.0040599
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0040599
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0040599&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0040599?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kramer-Schadt, Stephanie & Revilla, Eloy & Wiegand, Thorsten & Grimm, Volker, 2007. "Patterns for parameters in simulation models," Ecological Modelling, Elsevier, vol. 204(3), pages 553-556.
    2. Wang, Magnus & Grimm, Volker, 2007. "Home range dynamics and population regulation: An individual-based model of the common shrew Sorex araneus," Ecological Modelling, Elsevier, vol. 205(3), pages 397-409.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imron, Muhammad Ali & Gergs, Andre & Berger, Uta, 2012. "Structure and sensitivity analysis of individual-based predator–prey models," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 71-81.
    2. McLane, Adam J. & Semeniuk, Christina & McDermid, Gregory J. & Marceau, Danielle J., 2011. "The role of agent-based models in wildlife ecology and management," Ecological Modelling, Elsevier, vol. 222(8), pages 1544-1556.
    3. Perryman, Holly A. & Kaplan, Isaac C. & Blanchard, Julia L. & Fay, Gavin & Gaichas, Sarah K. & McGregor, Vidette L. & Morzaria-Luna, Hem Nalini & Porobic, Javier & Townsend, Howard & Fulton, Elizabeth, 2023. "Atlantis Ecosystem Model Summit 2022: Report from a workshop," Ecological Modelling, Elsevier, vol. 483(C).
    4. Turley, Marianne C. & Ford, E. David, 2009. "Definition and calculation of uncertainty in ecological process models," Ecological Modelling, Elsevier, vol. 220(17), pages 1968-1983.
    5. Nicholas R. Magliocca, 2015. "Model-Based Synthesis of Locally Contingent Responses to Global Market Signals," Land, MDPI, vol. 4(3), pages 1-35, September.
    6. Heymans, Johanna Jacomina & Coll, Marta & Link, Jason S. & Mackinson, Steven & Steenbeek, Jeroen & Walters, Carl & Christensen, Villy, 2016. "Best practice in Ecopath with Ecosim food-web models for ecosystem-based management," Ecological Modelling, Elsevier, vol. 331(C), pages 173-184.
    7. Malishev, Matthew & Kramer-Schadt, Stephanie, 2021. "Movement, models, and metabolism: Individual-based energy budget models as next-generation extensions for predicting animal movement outcomes across scales," Ecological Modelling, Elsevier, vol. 441(C).
    8. Liu, Chun & Bednarska, Agnieszka J. & Sibly, Richard M. & Murfitt, Roger C. & Edwards, Peter & Thorbek, Pernille, 2014. "Incorporating toxicokinetics into an individual-based model for more realistic pesticide exposure estimates: A case study of the wood mouse," Ecological Modelling, Elsevier, vol. 280(C), pages 30-39.
    9. Chudzinska, Magda & Nabe-Nielsen, Jacob & Smout, Sophie & Aarts, Geert & Brasseur, Sophie & Graham, Isla & Thompson, Paul & McConnell, Bernie, 2021. "AgentSeal: Agent-based model describing movement of marine central-place foragers," Ecological Modelling, Elsevier, vol. 440(C).
    10. Vincenot, Christian Ernest & Giannino, Francesco & Rietkerk, Max & Moriya, Kazuyuki & Mazzoleni, Stefano, 2011. "Theoretical considerations on the combined use of System Dynamics and individual-based modeling in ecology," Ecological Modelling, Elsevier, vol. 222(1), pages 210-218.
    11. Reynolds-Hogland, Melissa J. & Hogland, John S. & Mitchell, Michael S., 2008. "Evaluating intercepts from demographic models to understand resource limitation and resource thresholds," Ecological Modelling, Elsevier, vol. 211(3), pages 424-432.
    12. Bauduin, Sarah & McIntire, Eliot & St-Laurent, Martin-Hugues & Cumming, Steve, 2016. "Overcoming challenges of sparse telemetry data to estimate caribou movement," Ecological Modelling, Elsevier, vol. 335(C), pages 24-34.
    13. Ortega-Cisneros, Kelly & Cochrane, Kevern & Fulton, Elizabeth A., 2017. "An Atlantis model of the southern Benguela upwelling system: Validation, sensitivity analysis and insights into ecosystem functioning," Ecological Modelling, Elsevier, vol. 355(C), pages 49-63.
    14. Carter, Neil & Levin, Simon & Barlow, Adam & Grimm, Volker, 2015. "Modeling tiger population and territory dynamics using an agent-based approach," Ecological Modelling, Elsevier, vol. 312(C), pages 347-362.
    15. Byer, Nathan W. & Reid, Brendan N., 2022. "The emergence of imperfect philopatry and fidelity in spatially and temporally heterogeneous environments," Ecological Modelling, Elsevier, vol. 468(C).
    16. Girard, Philippe & Parrott, Lael & Caron, Charles-André & Green, David M., 2015. "Effects of temperature and surface water availability on spatiotemporal dynamics of stream salamanders using pattern-oriented modelling," Ecological Modelling, Elsevier, vol. 296(C), pages 12-23.
    17. Ashauer, Roman, 2010. "Toxicokinetic–toxicodynamic modelling in an individual based context—Consequences of parameter variability," Ecological Modelling, Elsevier, vol. 221(9), pages 1325-1328.
    18. Jakoby, Oliver & Grimm, Volker & Frank, Karin, 2014. "Pattern-oriented parameterization of general models for ecological application: Towards realistic evaluations of management approaches," Ecological Modelling, Elsevier, vol. 275(C), pages 78-88.
    19. Topping, Christopher John & Høye, Toke Thomas & Odderskær, Peter & Aebischer, Nicholas J., 2010. "A pattern-oriented modelling approach to simulating populations of grey partridge," Ecological Modelling, Elsevier, vol. 221(5), pages 729-737.
    20. Planque, Benjamin & Aarflot, Johanna M. & Buttay, Lucie & Carroll, JoLynn & Fransner, Filippa & Hansen, Cecilie & Husson, Bérengère & Langangen, Øystein & Lindstrøm, Ulf & Pedersen, Torstein & Primice, 2022. "A standard protocol for describing the evaluation of ecological models," Ecological Modelling, Elsevier, vol. 471(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0040599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.