IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0035287.html
   My bibliography  Save this article

The Structure of Mutations and the Evolution of Cooperation

Author

Listed:
  • Julián García
  • Arne Traulsen

Abstract

Evolutionary game dynamics in finite populations assumes that all mutations are equally likely, i.e., if there are strategies a single mutation can result in any strategy with probability . However, in biological systems it seems natural that not all mutations can arise from a given state. Certain mutations may be far away, or even be unreachable given the current composition of an evolving population. These distances between strategies (or genotypes) define a topology of mutations that so far has been neglected in evolutionary game theory. In this paper we re-evaluate classic results in the evolution of cooperation departing from the assumption of uniform mutations. We examine two cases: the evolution of reciprocal strategies in a repeated prisoner's dilemma, and the evolution of altruistic punishment in a public goods game. In both cases, alternative but reasonable mutation kernels shift known results in the direction of less cooperation. We therefore show that assuming uniform mutations has a substantial impact on the fate of an evolving population. Our results call for a reassessment of the “model-less” approach to mutations in evolutionary dynamics.

Suggested Citation

  • Julián García & Arne Traulsen, 2012. "The Structure of Mutations and the Evolution of Cooperation," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-9, April.
  • Handle: RePEc:plo:pone00:0035287
    DOI: 10.1371/journal.pone.0035287
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0035287
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0035287&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0035287?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Imhof, Lorens & Nowak, Martin & Fudenberg, Drew, 2007. "Tit-for-Tat or Win-Stay, Lose-Shift?," Scholarly Articles 3200671, Harvard University Department of Economics.
    2. Kandori, Michihiro & Mailath, George J & Rob, Rafael, 1993. "Learning, Mutation, and Long Run Equilibria in Games," Econometrica, Econometric Society, vol. 61(1), pages 29-56, January.
    3. Bergin, James & Lipman, Barton L, 1996. "Evolution with State-Dependent Mutations," Econometrica, Econometric Society, vol. 64(4), pages 943-956, July.
    4. Bomze Immanuel M. & Burger Reinhard, 1995. "Stability by Mutation in Evolutionary Games," Games and Economic Behavior, Elsevier, vol. 11(2), pages 146-172, November.
    5. Fudenberg, Drew & Imhof, Lorens A., 2006. "Imitation processes with small mutations," Journal of Economic Theory, Elsevier, vol. 131(1), pages 251-262, November.
    6. David G. Rand & Martin A. Nowak, 2011. "The evolution of antisocial punishment in optional public goods games," Nature Communications, Nature, vol. 2(1), pages 1-7, September.
    7. Martin A. Nowak & Akira Sasaki & Christine Taylor & Drew Fudenberg, 2004. "Emergence of cooperation and evolutionary stability in finite populations," Nature, Nature, vol. 428(6983), pages 646-650, April.
    8. Binmore, Kenneth G. & Samuelson, Larry, 1992. "Evolutionary stability in repeated games played by finite automata," Journal of Economic Theory, Elsevier, vol. 57(2), pages 278-305, August.
    9. Hannelore De Silva & Christoph Hauert & Arne Traulsen & Karl Sigmund, 2010. "Freedom, enforcement, and the social dilemma of strong altruism," Journal of Evolutionary Economics, Springer, vol. 20(2), pages 203-217, April.
    10. Fudenberg, Drew & Maskin, Eric, 1990. "Evolution and Cooperation in Noisy Repeated Games," American Economic Review, American Economic Association, vol. 80(2), pages 274-279, May.
    11. Karl Sigmund & Hannelore De Silva & Arne Traulsen & Christoph Hauert, 2010. "Social learning promotes institutions for governing the commons," Nature, Nature, vol. 466(7308), pages 861-863, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Hilbe & Moshe Hoffman & Martin A. Nowak, 2015. "Cooperate without Looking in a Non-Repeated Game," Games, MDPI, vol. 6(4), pages 1-15, September.
    2. Peter S. Park & Martin A. Nowak & Christian Hilbe, 2022. "Cooperation in alternating interactions with memory constraints," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Dan C. Baciu, 2023. "Causal models, creativity, and diversity," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-15, December.
    4. Benjamin M Zagorsky & Johannes G Reiter & Krishnendu Chatterjee & Martin A Nowak, 2013. "Forgiver Triumphs in Alternating Prisoner's Dilemma," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-8, December.
    5. Kurokawa, Shun & Ihara, Yasuo, 2013. "Evolution of social behavior in finite populations: A payoff transformation in general n-player games and its implications," Theoretical Population Biology, Elsevier, vol. 84(C), pages 1-8.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Huanren, 2018. "Errors can increase cooperation in finite populations," Games and Economic Behavior, Elsevier, vol. 107(C), pages 203-219.
    2. John T. Scholz & Cheng‐Lung Wang, 2009. "Learning to Cooperate: Learning Networks and the Problem of Altruism," American Journal of Political Science, John Wiley & Sons, vol. 53(3), pages 572-587, July.
    3. Bin Wu & Julián García & Christoph Hauert & Arne Traulsen, 2013. "Extrapolating Weak Selection in Evolutionary Games," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-7, December.
    4. García, Julián & van Veelen, Matthijs, 2016. "In and out of equilibrium I: Evolution of strategies in repeated games with discounting," Journal of Economic Theory, Elsevier, vol. 161(C), pages 161-189.
    5. Luis A Martinez-Vaquero & José A Cuesta & Angel Sánchez, 2012. "Generosity Pays in the Presence of Direct Reciprocity: A Comprehensive Study of 2×2 Repeated Games," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-12, April.
    6. Van Cleve, Jeremy, 2015. "Social evolution and genetic interactions in the short and long term," Theoretical Population Biology, Elsevier, vol. 103(C), pages 2-26.
    7. Flávio L Pinheiro & Vítor V Vasconcelos & Francisco C Santos & Jorge M Pacheco, 2014. "Evolution of All-or-None Strategies in Repeated Public Goods Dilemmas," PLOS Computational Biology, Public Library of Science, vol. 10(11), pages 1-5, November.
    8. Pedro Dal BÛ & Enrique R. Pujals, 2013. "The Evolutionary Robustness of Forgiveness and Cooperation," Working Papers 2013-5, Brown University, Department of Economics.
    9. Fudenberg, Drew & Imhof, Lorens A., 2008. "Monotone imitation dynamics in large populations," Journal of Economic Theory, Elsevier, vol. 140(1), pages 229-245, May.
    10. Tatur, Tymon, 2023. "Evolutionarily rational mutations in structured populations," Journal of Economic Theory, Elsevier, vol. 212(C).
    11. Oscar Volij, 1998. "In Defense of DEFECT or Cooperation does not Justify the Solution Concept," Economic theory and game theory 007, Oscar Volij, revised 26 Aug 1999.
    12. Juang, W-T. & Sabourian, H., 2021. "Rules and Mutation - A Theory of How Efficiency and Rawlsian Egalitarianism/Symmetry May Emerge," Cambridge Working Papers in Economics 2101, Faculty of Economics, University of Cambridge.
    13. Volij, Oscar, 2002. "In Defense of DEFECT," Games and Economic Behavior, Elsevier, vol. 39(2), pages 309-321, May.
    14. Jehiel, Philippe, 1998. "Learning to Play Limited Forecast Equilibria," Games and Economic Behavior, Elsevier, vol. 22(2), pages 274-298, February.
    15. Ellison, Glenn & Fudenberg, Drew & Imhof, Lorens A., 2009. "Random matching in adaptive dynamics," Games and Economic Behavior, Elsevier, vol. 66(1), pages 98-114, May.
    16. Fudenberg, Drew & Imhof, Lorens A., 2006. "Imitation processes with small mutations," Journal of Economic Theory, Elsevier, vol. 131(1), pages 251-262, November.
    17. Sobel, Joel, 2000. "Economists' Models of Learning," Journal of Economic Theory, Elsevier, vol. 94(2), pages 241-261, October.
    18. Sandholm, William H., 2012. "Stochastic imitative game dynamics with committed agents," Journal of Economic Theory, Elsevier, vol. 147(5), pages 2056-2071.
    19. Drew Fudenberg & David G. Rand & Anna Dreber, 2012. "Slow to Anger and Fast to Forgive: Cooperation in an Uncertain World," American Economic Review, American Economic Association, vol. 102(2), pages 720-749, April.
    20. Anderlini, Luca & Sabourian, Hamid, 2001. "Cooperation and computability in n-player games," Mathematical Social Sciences, Elsevier, vol. 42(2), pages 99-137, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0035287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.