IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0035235.html
   My bibliography  Save this article

European American Stratification in Ovarian Cancer Case Control Data: The Utility of Genome-Wide Data for Inferring Ancestry

Author

Listed:
  • Paola Raska
  • Edwin Iversen
  • Ann Chen
  • Zhihua Chen
  • Brooke L Fridley
  • Jennifer Permuth-Wey
  • Ya-Yu Tsai
  • Robert A Vierkant
  • Ellen L Goode
  • Harvey Risch
  • Joellen M Schildkraut
  • Thomas A Sellers
  • Jill Barnholtz-Sloan

Abstract

We investigated the ability of several principal components analysis (PCA)-based strategies to detect and control for population stratification using data from a multi-center study of epithelial ovarian cancer among women of European-American ethnicity. These include a correction based on an ancestry informative markers (AIMs) panel designed to capture European ancestral variation and corrections utilizing un-thinned genome-wide SNP data; case-control samples were drawn from four geographically distinct North-American sites. The AIMs-only and genome-wide first principal components (PC1) both corresponded to the previously described North or Northwest-Southeast axis of European variation. We found that the genome-wide PCA captured this primary dimension of variation more precisely and identified additional axes of genome-wide variation of relevance to epithelial ovarian cancer. Associations evident between the genome-wide PCs and study site corroborate North American immigration history and suggest that undiscovered dimensions of variation lie within Northern Europe. The structure captured by the genome-wide PCA was also found within control individuals and did not reflect the case-control variation present in the data. The genome-wide PCA highlighted three regions of local LD, corresponding to the lactase (LCT) gene on chromosome 2, the human leukocyte antigen system (HLA) on chromosome 6 and to a common inversion polymorphism on chromosome 8. These features did not compromise the efficacy of PCs from this analysis for ancestry control. This study concludes that although AIMs panels are a cost-effective way of capturing population structure, genome-wide data should preferably be used when available.

Suggested Citation

  • Paola Raska & Edwin Iversen & Ann Chen & Zhihua Chen & Brooke L Fridley & Jennifer Permuth-Wey & Ya-Yu Tsai & Robert A Vierkant & Ellen L Goode & Harvey Risch & Joellen M Schildkraut & Thomas A Seller, 2012. "European American Stratification in Ovarian Cancer Case Control Data: The Utility of Genome-Wide Data for Inferring Ancestry," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-9, May.
  • Handle: RePEc:plo:pone00:0035235
    DOI: 10.1371/journal.pone.0035235
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0035235
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0035235&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0035235?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peristera Paschou & Petros Drineas & Jamey Lewis & Caroline M Nievergelt & Deborah A Nickerson & Joshua D Smith & Paul M Ridker & Daniel I Chasman & Ronald M Krauss & Elad Ziv, 2008. "Tracing Sub-Structure in the European American Population with PCA-Informative Markers," PLOS Genetics, Public Library of Science, vol. 4(7), pages 1-13, July.
    2. Petros Drineas & Jamey Lewis & Peristera Paschou, 2010. "Inferring Geographic Coordinates of Origin for Europeans Using Small Panels of Ancestry Informative Markers," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-6, August.
    3. Robert Sladek & Ghislain Rocheleau & Johan Rung & Christian Dina & Lishuang Shen & David Serre & Philippe Boutin & Daniel Vincent & Alexandre Belisle & Samy Hadjadj & Beverley Balkau & Barbara Heude &, 2007. "A genome-wide association study identifies novel risk loci for type 2 diabetes," Nature, Nature, vol. 445(7130), pages 881-885, February.
    4. Chao Tian & Robert M Plenge & Michael Ransom & Annette Lee & Pablo Villoslada & Carlo Selmi & Lars Klareskog & Ann E Pulver & Lihong Qi & Peter K Gregersen & Michael F Seldin, 2008. "Analysis and Application of European Genetic Substructure Using 300 K SNP Information," PLOS Genetics, Public Library of Science, vol. 4(1), pages 1-11, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peristera Paschou & Petros Drineas & Jamey Lewis & Caroline M Nievergelt & Deborah A Nickerson & Joshua D Smith & Paul M Ridker & Daniel I Chasman & Ronald M Krauss & Elad Ziv, 2008. "Tracing Sub-Structure in the European American Population with PCA-Informative Markers," PLOS Genetics, Public Library of Science, vol. 4(7), pages 1-13, July.
    2. Marie-Claude Babron & Marie de Tayrac & Douglas N Rutledge & Eleftheria Zeggini & Emmanuelle Génin, 2012. "Rare and Low Frequency Variant Stratification in the UK Population: Description and Impact on Association Tests," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-9, October.
    3. Jun Zhang, 2010. "Ancestral Informative Marker Selection and Population Structure Visualization Using Sparse Laplacian Eigenfunctions," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-12, November.
    4. Marina Muzzio & Josefina M B Motti & Paula B Paz Sepulveda & Muh-ching Yee & Thomas Cooke & María R Santos & Virginia Ramallo & Emma L Alfaro & Jose E Dipierri & Graciela Bailliet & Claudio M Bravi & , 2018. "Population structure in Argentina," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-13, May.
    5. Ping Rao & Hao Wang & Honghong Fang & Qing Gao & Jie Zhang & Manshu Song & Yong Zhou & Youxin Wang & Wei Wang, 2016. "Association between IGF2BP2 Polymorphisms and Type 2 Diabetes Mellitus: A Case–Control Study and Meta-Analysis," IJERPH, MDPI, vol. 13(6), pages 1-13, June.
    6. Greve, Jane, 2008. "Obesity and labor market outcomes in Denmark," Economics & Human Biology, Elsevier, vol. 6(3), pages 350-362, December.
    7. John PA Ioannidis & Nikolaos A Patsopoulos & Evangelos Evangelou, 2007. "Heterogeneity in Meta-Analyses of Genome-Wide Association Investigations," PLOS ONE, Public Library of Science, vol. 2(9), pages 1-7, September.
    8. Paul F O’Reilly & Clive J Hoggart & Yotsawat Pomyen & Federico C F Calboli & Paul Elliott & Marjo-Riitta Jarvelin & Lachlan J M Coin, 2012. "MultiPhen: Joint Model of Multiple Phenotypes Can Increase Discovery in GWAS," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-1, May.
    9. Andrey V Khrunin & Denis V Khokhrin & Irina N Filippova & Tõnu Esko & Mari Nelis & Natalia A Bebyakova & Natalia L Bolotova & Janis Klovins & Liene Nikitina-Zake & Karola Rehnström & Samuli Ripatti & , 2013. "A Genome-Wide Analysis of Populations from European Russia Reveals a New Pole of Genetic Diversity in Northern Europe," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-9, March.
    10. Sarah Meulebrouck & Judith Merrheim & Gurvan Queniat & Cyril Bourouh & Mehdi Derhourhi & Mathilde Boissel & Xiaoyan Yi & Alaa Badreddine & Raphaël Boutry & Audrey Leloire & Bénédicte Toussaint & Souhi, 2024. "Functional genetics reveals the contribution of delta opioid receptor to type 2 diabetes and beta-cell function," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Sato Yasunori & Laird Nan & Suganami Hideki & Hamada Chikuma & Niki Naoto & Yoshimura Isao & Yoshida Teruhiko, 2009. "Statistical Screening Method for Genetic Factors Influencing Susceptibility to Common Diseases in a Two-Stage Genome-Wide Association Study," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-23, November.
    12. Jianzhong Ma & Christopher I Amos, 2012. "Investigation of Inversion Polymorphisms in the Human Genome Using Principal Components Analysis," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-12, July.
    13. Jiajin Li & Brandon Jew & Lingyu Zhan & Sungoo Hwang & Giovanni Coppola & Nelson B Freimer & Jae Hoon Sul, 2019. "ForestQC: Quality control on genetic variants from next-generation sequencing data using random forest," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-30, December.
    14. Guang Guo, 2008. "Introduction to the Special Issue on Society and Genetics," Sociological Methods & Research, , vol. 37(2), pages 159-163, November.
    15. Eric R Londin & Margaret A Keller & Cathleen Maista & Gretchen Smith & Laura A Mamounas & Ran Zhang & Steven J Madore & Katrina Gwinn & Roderick A Corriveau, 2010. "CoAIMs: A Cost-Effective Panel of Ancestry Informative Markers for Determining Continental Origins," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-12, October.
    16. Kai Yu & Zhaoming Wang & Qizhai Li & Sholom Wacholder & David J Hunter & Robert N Hoover & Stephen Chanock & Gilles Thomas, 2008. "Population Substructure and Control Selection in Genome-Wide Association Studies," PLOS ONE, Public Library of Science, vol. 3(7), pages 1-14, July.
    17. Hongyan Mao & Qin Li & Shujun Gao, 2012. "Meta-Analysis of the Relationship between Common Type 2 Diabetes Risk Gene Variants with Gestational Diabetes Mellitus," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-7, September.
    18. Petros Drineas & Jamey Lewis & Peristera Paschou, 2010. "Inferring Geographic Coordinates of Origin for Europeans Using Small Panels of Ancestry Informative Markers," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-6, August.
    19. Ekaterina Alekseevna Sokolova & Irina Arkadievna Bondar & Olesya Yurievna Shabelnikova & Olga Vladimirovna Pyankova & Maxim Leonidovich Filipenko, 2015. "Replication of KCNJ11 (p.E23K) and ABCC8 (p.S1369A) Association in Russian Diabetes Mellitus 2 Type Cohort and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-21, May.
    20. Xiaobo Li & Yuqiong Li & Bei Song & Shujie Guo & Shaoli Chu & Nan Jia & Wenquan Niu, 2012. "Hematopoietically-Expressed Homeobox Gene Three Widely-Evaluated Polymorphisms and Risk for Diabetes: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-10, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0035235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.