IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/0040004.html
   My bibliography  Save this article

Analysis and Application of European Genetic Substructure Using 300 K SNP Information

Author

Listed:
  • Chao Tian
  • Robert M Plenge
  • Michael Ransom
  • Annette Lee
  • Pablo Villoslada
  • Carlo Selmi
  • Lars Klareskog
  • Ann E Pulver
  • Lihong Qi
  • Peter K Gregersen
  • Michael F Seldin

Abstract

European population genetic substructure was examined in a diverse set of >1,000 individuals of European descent, each genotyped with >300 K SNPs. Both STRUCTURE and principal component analyses (PCA) showed the largest division/principal component (PC) differentiated northern from southern European ancestry. A second PC further separated Italian, Spanish, and Greek individuals from those of Ashkenazi Jewish ancestry as well as distinguishing among northern European populations. In separate analyses of northern European participants other substructure relationships were discerned showing a west to east gradient. Application of this substructure information was critical in examining a real dataset in whole genome association (WGA) analyses for rheumatoid arthritis in European Americans to reduce false positive signals. In addition, two sets of European substructure ancestry informative markers (ESAIMs) were identified that provide substantial substructure information. The results provide further insight into European population genetic substructure and show that this information can be used for improving error rates in association testing of candidate genes and in replication studies of WGA scans.: Ancestry differences corresponding to ethnic groups may be important in determining disease risk factors and optimizing treatment. Our study further defines ancestry relationship among different European ethnic groups by examining over 300 thousand variations in DNA, in over 2,000 individuals. This study allowed a clearer ascertainment of differences that could not be discerned in smaller studies using more limited numbers of DNA variations. We show clear differences among European American participants of different self-identified ethnic affiliation. The analyses showed multiple components of variation. The components showing the largest variations generally corresponded to the grandparental country or region of origin within Europe. We also show the importance of applying this information in determining genetic risk factors for complex diseases. Moreover, the results have enabled a better selection of smaller numbers of DNA variations that can be used in future disease studies to identify more homogenous participant groups and minimize false positive and false negative results in assessing genetic risk factors for disease.

Suggested Citation

  • Chao Tian & Robert M Plenge & Michael Ransom & Annette Lee & Pablo Villoslada & Carlo Selmi & Lars Klareskog & Ann E Pulver & Lihong Qi & Peter K Gregersen & Michael F Seldin, 2008. "Analysis and Application of European Genetic Substructure Using 300 K SNP Information," PLOS Genetics, Public Library of Science, vol. 4(1), pages 1-11, January.
  • Handle: RePEc:plo:pgen00:0040004
    DOI: 10.1371/journal.pgen.0040004
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.0040004
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.0040004&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.0040004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peristera Paschou & Petros Drineas & Jamey Lewis & Caroline M Nievergelt & Deborah A Nickerson & Joshua D Smith & Paul M Ridker & Daniel I Chasman & Ronald M Krauss & Elad Ziv, 2008. "Tracing Sub-Structure in the European American Population with PCA-Informative Markers," PLOS Genetics, Public Library of Science, vol. 4(7), pages 1-13, July.
    2. Andrey V Khrunin & Denis V Khokhrin & Irina N Filippova & Tõnu Esko & Mari Nelis & Natalia A Bebyakova & Natalia L Bolotova & Janis Klovins & Liene Nikitina-Zake & Karola Rehnström & Samuli Ripatti & , 2013. "A Genome-Wide Analysis of Populations from European Russia Reveals a New Pole of Genetic Diversity in Northern Europe," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-9, March.
    3. Kai Yu & Zhaoming Wang & Qizhai Li & Sholom Wacholder & David J Hunter & Robert N Hoover & Stephen Chanock & Gilles Thomas, 2008. "Population Substructure and Control Selection in Genome-Wide Association Studies," PLOS ONE, Public Library of Science, vol. 3(7), pages 1-14, July.
    4. Marina Muzzio & Josefina M B Motti & Paula B Paz Sepulveda & Muh-ching Yee & Thomas Cooke & María R Santos & Virginia Ramallo & Emma L Alfaro & Jose E Dipierri & Graciela Bailliet & Claudio M Bravi & , 2018. "Population structure in Argentina," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-13, May.
    5. Markus Neuditschko & Mehar S Khatkar & Herman W Raadsma, 2012. "NetView: A High-Definition Network-Visualization Approach to Detect Fine-Scale Population Structures from Genome-Wide Patterns of Variation," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-13, October.
    6. Nagel, Mats, 2020. "Changing perspectives: Towards detailed phenotyping in genetics," Thesis Commons a4nz2, Center for Open Science.
    7. Eric R Londin & Margaret A Keller & Cathleen Maista & Gretchen Smith & Laura A Mamounas & Ran Zhang & Steven J Madore & Katrina Gwinn & Roderick A Corriveau, 2010. "CoAIMs: A Cost-Effective Panel of Ancestry Informative Markers for Determining Continental Origins," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-12, October.
    8. Chao Tian & Roman Kosoy & Annette Lee & Michael Ransom & John W Belmont & Peter K Gregersen & Michael F Seldin, 2008. "Analysis of East Asia Genetic Substructure Using Genome-Wide SNP Arrays," PLOS ONE, Public Library of Science, vol. 3(12), pages 1-10, December.
    9. Marie-Claude Babron & Marie de Tayrac & Douglas N Rutledge & Eleftheria Zeggini & Emmanuelle Génin, 2012. "Rare and Low Frequency Variant Stratification in the UK Population: Description and Impact on Association Tests," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-9, October.
    10. Jianzhong Ma & Christopher I Amos, 2012. "Investigation of Inversion Polymorphisms in the Human Genome Using Principal Components Analysis," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-12, July.
    11. Paola Raska & Edwin Iversen & Ann Chen & Zhihua Chen & Brooke L Fridley & Jennifer Permuth-Wey & Ya-Yu Tsai & Robert A Vierkant & Ellen L Goode & Harvey Risch & Joellen M Schildkraut & Thomas A Seller, 2012. "European American Stratification in Ovarian Cancer Case Control Data: The Utility of Genome-Wide Data for Inferring Ancestry," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-9, May.
    12. Aman Agrawal & Alec M Chiu & Minh Le & Eran Halperin & Sriram Sankararaman, 2020. "Scalable probabilistic PCA for large-scale genetic variation data," PLOS Genetics, Public Library of Science, vol. 16(5), pages 1-19, May.
    13. Jianzhong Ma & Christopher I Amos, 2012. "Principal Components Analysis of Population Admixture," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-12, July.
    14. Jun Zhang, 2010. "Ancestral Informative Marker Selection and Population Structure Visualization Using Sparse Laplacian Eigenfunctions," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-12, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:0040004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.