IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0013443.html
   My bibliography  Save this article

CoAIMs: A Cost-Effective Panel of Ancestry Informative Markers for Determining Continental Origins

Author

Listed:
  • Eric R Londin
  • Margaret A Keller
  • Cathleen Maista
  • Gretchen Smith
  • Laura A Mamounas
  • Ran Zhang
  • Steven J Madore
  • Katrina Gwinn
  • Roderick A Corriveau

Abstract

Background: Genetic ancestry is known to impact outcomes of genotype-phenotype studies that are designed to identify risk for common diseases in human populations. Failure to control for population stratification due to genetic ancestry can significantly confound results of disease association studies. Moreover, ancestry is a critical factor in assessing lifetime risk of disease, and can play an important role in optimizing treatment. As modern medicine moves towards using personal genetic information for clinical applications, it is important to determine genetic ancestry in an accurate, cost-effective and efficient manner. Self-identified race is a common method used to track and control for population stratification; however, social constructs of race are not necessarily informative for genetic applications. The use of ancestry informative markers (AIMs) is a more accurate method for determining genetic ancestry for the purposes of population stratification. Methodology/Principal Findings: Here we introduce a novel panel of 36 microsatellite (MSAT) AIMs that determines continental admixture proportions. This panel, which we have named Continental Ancestry Informative Markers or CoAIMs, consists of MSAT AIMs that were chosen based upon their measure of genetic variance (Fst), allele frequencies and their suitability for efficient genotyping. Genotype analysis using CoAIMs along with a Bayesian clustering method (STRUCTURE) is able to discern continental origins including Europe/Middle East (Caucasians), East Asia, Africa, Native America, and Oceania. In addition to determining continental ancestry for individuals without significant admixture, we applied CoAIMs to ascertain admixture proportions of individuals of self declared race. Conclusion/Significance: CoAIMs can be used to efficiently and effectively determine continental admixture proportions in a sample set. The CoAIMs panel is a valuable resource for genetic researchers performing case-control genetic association studies, as it can control for the confounding effects of population stratification. The MSAT-based approach used here has potential for broad applicability as a cost effective tool toward determining admixture proportions.

Suggested Citation

  • Eric R Londin & Margaret A Keller & Cathleen Maista & Gretchen Smith & Laura A Mamounas & Ran Zhang & Steven J Madore & Katrina Gwinn & Roderick A Corriveau, 2010. "CoAIMs: A Cost-Effective Panel of Ancestry Informative Markers for Determining Continental Origins," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-12, October.
  • Handle: RePEc:plo:pone00:0013443
    DOI: 10.1371/journal.pone.0013443
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0013443
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0013443&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0013443?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nick Patterson & Alkes L Price & David Reich, 2006. "Population Structure and Eigenanalysis," PLOS Genetics, Public Library of Science, vol. 2(12), pages 1-20, December.
    2. Noah A Rosenberg & Saurabh Mahajan & Sohini Ramachandran & Chengfeng Zhao & Jonathan K Pritchard & Marcus W Feldman, 2005. "Clines, Clusters, and the Effect of Study Design on the Inference of Human Population Structure," PLOS Genetics, Public Library of Science, vol. 1(6), pages 1-12, December.
    3. Mattias Jakobsson & Sonja W. Scholz & Paul Scheet & J. Raphael Gibbs & Jenna M. VanLiere & Hon-Chung Fung & Zachary A. Szpiech & James H. Degnan & Kai Wang & Rita Guerreiro & Jose M. Bras & Jennifer C, 2008. "Genotype, haplotype and copy-number variation in worldwide human populations," Nature, Nature, vol. 451(7181), pages 998-1003, February.
    4. Dongliang Ge & Jacques Fellay & Alexander J. Thompson & Jason S. Simon & Kevin V. Shianna & Thomas J. Urban & Erin L. Heinzen & Ping Qiu & Arthur H. Bertelsen & Andrew J. Muir & Mark Sulkowski & John , 2009. "Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance," Nature, Nature, vol. 461(7262), pages 399-401, September.
    5. Chao Tian & Robert M Plenge & Michael Ransom & Annette Lee & Pablo Villoslada & Carlo Selmi & Lars Klareskog & Ann E Pulver & Lihong Qi & Peter K Gregersen & Michael F Seldin, 2008. "Analysis and Application of European Genetic Substructure Using 300 K SNP Information," PLOS Genetics, Public Library of Science, vol. 4(1), pages 1-11, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peristera Paschou & Petros Drineas & Jamey Lewis & Caroline M Nievergelt & Deborah A Nickerson & Joshua D Smith & Paul M Ridker & Daniel I Chasman & Ronald M Krauss & Elad Ziv, 2008. "Tracing Sub-Structure in the European American Population with PCA-Informative Markers," PLOS Genetics, Public Library of Science, vol. 4(7), pages 1-13, July.
    2. Andrey V Khrunin & Denis V Khokhrin & Irina N Filippova & Tõnu Esko & Mari Nelis & Natalia A Bebyakova & Natalia L Bolotova & Janis Klovins & Liene Nikitina-Zake & Karola Rehnström & Samuli Ripatti & , 2013. "A Genome-Wide Analysis of Populations from European Russia Reveals a New Pole of Genetic Diversity in Northern Europe," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-9, March.
    3. Jianzhong Ma & Christopher I Amos, 2012. "Investigation of Inversion Polymorphisms in the Human Genome Using Principal Components Analysis," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-12, July.
    4. Kai Yu & Zhaoming Wang & Qizhai Li & Sholom Wacholder & David J Hunter & Robert N Hoover & Stephen Chanock & Gilles Thomas, 2008. "Population Substructure and Control Selection in Genome-Wide Association Studies," PLOS ONE, Public Library of Science, vol. 3(7), pages 1-14, July.
    5. Markus Neuditschko & Mehar S Khatkar & Herman W Raadsma, 2012. "NetView: A High-Definition Network-Visualization Approach to Detect Fine-Scale Population Structures from Genome-Wide Patterns of Variation," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-13, October.
    6. Marie-Claude Babron & Marie de Tayrac & Douglas N Rutledge & Eleftheria Zeggini & Emmanuelle Génin, 2012. "Rare and Low Frequency Variant Stratification in the UK Population: Description and Impact on Association Tests," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-9, October.
    7. Wang Chaolong & Szpiech Zachary A & Degnan James H & Jakobsson Mattias & Pemberton Trevor J & Hardy John A & Singleton Andrew B & Rosenberg Noah A, 2010. "Comparing Spatial Maps of Human Population-Genetic Variation Using Procrustes Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-22, January.
    8. Aman Agrawal & Alec M Chiu & Minh Le & Eran Halperin & Sriram Sankararaman, 2020. "Scalable probabilistic PCA for large-scale genetic variation data," PLOS Genetics, Public Library of Science, vol. 16(5), pages 1-19, May.
    9. Ricardo Kanitz & Elsa G Guillot & Sylvain Antoniazza & Samuel Neuenschwander & Jérôme Goudet, 2018. "Complex genetic patterns in human arise from a simple range-expansion model over continental landmasses," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-16, February.
    10. Gyaneshwer Chaubey & Anurag Kadian & Saroj Bala & Vadlamudi Raghavendra Rao, 2015. "Genetic Affinity of the Bhil, Kol and Gond Mentioned in Epic Ramayana," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-11, June.
    11. Daniel Svensson & Matilda Rentoft & Anna M Dahlin & Emma Lundholm & Pall I Olason & Andreas Sjödin & Carin Nylander & Beatrice S Melin & Johan Trygg & Erik Johansson, 2020. "A whole-genome sequenced control population in northern Sweden reveals subregional genetic differences," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-18, September.
    12. Marina Muzzio & Josefina M B Motti & Paula B Paz Sepulveda & Muh-ching Yee & Thomas Cooke & María R Santos & Virginia Ramallo & Emma L Alfaro & Jose E Dipierri & Graciela Bailliet & Claudio M Bravi & , 2018. "Population structure in Argentina," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-13, May.
    13. Estavoyer, Maxime & François, Olivier, 2022. "Theoretical analysis of principal components in an umbrella model of intraspecific evolution," Theoretical Population Biology, Elsevier, vol. 148(C), pages 11-21.
    14. Felsenstein, Joseph, 2015. "Covariation of gene frequencies in a stepping-stone lattice of populations," Theoretical Population Biology, Elsevier, vol. 100(C), pages 88-97.
    15. Yaron Granot & Omri Tal & Saharon Rosset & Karl Skorecki, 2016. "On the Apportionment of Population Structure," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-24, August.
    16. Özkan İş & Xue Wang & Joseph S. Reddy & Yuhao Min & Elanur Yilmaz & Prabesh Bhattarai & Tulsi Patel & Jeremiah Bergman & Zachary Quicksall & Michael G. Heckman & Frederick Q. Tutor-New & Birsen Can De, 2024. "Gliovascular transcriptional perturbations in Alzheimer’s disease reveal molecular mechanisms of blood brain barrier dysfunction," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    17. Hyosik Jang & Ian M Ehrenreich, 2012. "Genome-Wide Characterization of Genetic Variation in the Unicellular, Green Alga Chlamydomonas reinhardtii," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    18. Mathieu Gautier & Denis Laloë & Katayoun Moazami-Goudarzi, 2010. "Insights into the Genetic History of French Cattle from Dense SNP Data on 47 Worldwide Breeds," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-11, September.
    19. Xiaofeng Cai & Xuepeng Sun & Chenxi Xu & Honghe Sun & Xiaoli Wang & Chenhui Ge & Zhonghua Zhang & Quanxi Wang & Zhangjun Fei & Chen Jiao & Quanhua Wang, 2021. "Genomic analyses provide insights into spinach domestication and the genetic basis of agronomic traits," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    20. Lee, Anthony J. & Hibbs, Courtney & Wright, Margaret J. & Martin, Nicholas G. & Keller, Matthew C. & Zietsch, Brendan P., 2017. "Assessing the accuracy of perceptions of intelligence based on heritable facial features," Intelligence, Elsevier, vol. 64(C), pages 1-8.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0013443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.