IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0028471.html
   My bibliography  Save this article

A Phosphate-Regulated Promoter for Fine-Tuned and Reversible Overexpression in Ostreococcus: Application to Circadian Clock Functional Analysis

Author

Listed:
  • El Batoul Djouani-Tahri
  • Frédéric Sanchez
  • Jean-Claude Lozano
  • François-Yves Bouget

Abstract

Background: The green picoalga Ostreococcus tauri (Prasinophyceae), which has been described as the smallest free-living eukaryotic organism, has minimal cellular ultra-structure and a very small genome. In recent years, O. tauri has emerged as a novel model organism for systems biology approaches that combine functional genomics and mathematical modeling, with a strong emphasis on light regulated processes and circadian clock. These approaches were made possible through the implementation of a minimal molecular toolbox for gene functional analysis including overexpression and knockdown strategies. We have previously shown that the promoter of the High Affinity Phosphate Transporter (HAPT) gene drives the expression of a luciferase reporter at high and constitutive levels under constant light. Methodology/Principal Findings: Here we report, using a luciferase reporter construct, that the HAPT promoter can be finely and reversibly tuned by modulating the level and nature of phosphate in culture medium. This HAPT regulation was additionally used to analyze the circadian clock gene Time of Cab expression 1 (TOC1). The phenotype of a TOC1ox/CCA1:Luc line was reverted from arrhythmic to rhythmic simply by adding phosphate to the culture medium. Furthermore, since the time of phosphate injection had no effect on the phase of CCA1:Luc expression, this study suggests further that TOC1 is a central clock gene in Ostreococcus. Conclusions/Perspectives: We have developed a phosphate-regulated expression system that allows fine gene function analysis in Ostreococcus. Recently, there has been a growing interest in microalgae as cell factories. This non-toxic phosphate-regulated system may prove useful in tuning protein expression levels quantitatively and temporally for biotechnological applications.

Suggested Citation

  • El Batoul Djouani-Tahri & Frédéric Sanchez & Jean-Claude Lozano & François-Yves Bouget, 2011. "A Phosphate-Regulated Promoter for Fine-Tuned and Reversible Overexpression in Ostreococcus: Application to Circadian Clock Functional Analysis," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-10, December.
  • Handle: RePEc:plo:pone00:0028471
    DOI: 10.1371/journal.pone.0028471
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028471
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0028471&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0028471?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John S. O’Neill & Gerben van Ooijen & Laura E. Dixon & Carl Troein & Florence Corellou & François-Yves Bouget & Akhilesh B. Reddy & Andrew J. Millar, 2011. "Circadian rhythms persist without transcription in a eukaryote," Nature, Nature, vol. 469(7331), pages 554-558, January.
    2. Harriet G. McWatters & Ruth M. Bastow & Anthony Hall & Andrew J. Millar, 2000. "The ELF3 zeitnehmer regulates light signalling to the circadian clock," Nature, Nature, vol. 408(6813), pages 716-720, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mathias Foo & Declan G Bates & Ozgur E Akman, 2020. "A simplified modelling framework facilitates more complex representations of plant circadian clocks," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-34, March.
    2. Margaritis Voliotis & Philipp Thomas & Ramon Grima & Clive G Bowsher, 2016. "Stochastic Simulation of Biomolecular Networks in Dynamic Environments," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-18, June.
    3. Maximilian O Press & Amy Lanctot & Christine Queitsch, 2016. "PIF4 and ELF3 Act Independently in Arabidopsis thaliana Thermoresponsive Flowering," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-18, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0028471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.