IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0025635.html
   My bibliography  Save this article

Bayesian Hierarchical Models Combining Different Study Types and Adjusting for Covariate Imbalances: A Simulation Study to Assess Model Performance

Author

Listed:
  • C Elizabeth McCarron
  • Eleanor M Pullenayegum
  • Lehana Thabane
  • Ron Goeree
  • Jean-Eric Tarride

Abstract

Background: Bayesian hierarchical models have been proposed to combine evidence from different types of study designs. However, when combining evidence from randomised and non-randomised controlled studies, imbalances in patient characteristics between study arms may bias the results. The objective of this study was to assess the performance of a proposed Bayesian approach to adjust for imbalances in patient level covariates when combining evidence from both types of study designs. Methodology/Principal Findings: Simulation techniques, in which the truth is known, were used to generate sets of data for randomised and non-randomised studies. Covariate imbalances between study arms were introduced in the non-randomised studies. The performance of the Bayesian hierarchical model adjusted for imbalances was assessed in terms of bias. The data were also modelled using three other Bayesian approaches for synthesising evidence from randomised and non-randomised studies. The simulations considered six scenarios aimed at assessing the sensitivity of the results to changes in the impact of the imbalances and the relative number and size of studies of each type. For all six scenarios considered, the Bayesian hierarchical model adjusted for differences within studies gave results that were unbiased and closest to the true value compared to the other models. Conclusions/Significance: Where informed health care decision making requires the synthesis of evidence from randomised and non-randomised study designs, the proposed hierarchical Bayesian method adjusted for differences in patient characteristics between study arms may facilitate the optimal use of all available evidence leading to unbiased results compared to unadjusted analyses.

Suggested Citation

  • C Elizabeth McCarron & Eleanor M Pullenayegum & Lehana Thabane & Ron Goeree & Jean-Eric Tarride, 2011. "Bayesian Hierarchical Models Combining Different Study Types and Adjusting for Covariate Imbalances: A Simulation Study to Assess Model Performance," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-7, October.
  • Handle: RePEc:plo:pone00:0025635
    DOI: 10.1371/journal.pone.0025635
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0025635
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0025635&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0025635?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rebecca M. Turner & David J. Spiegelhalter & Gordon C. S. Smith & Simon G. Thompson, 2009. "Bias modelling in evidence synthesis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 21-47, January.
    2. A. E. Ades & A. J. Sutton, 2006. "Multiparameter evidence synthesis in epidemiology and medical decision‐making: current approaches," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(1), pages 5-35, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isabelle Albert & Emmanuelle Espié & Henriette de Valk & Jean‐Baptiste Denis, 2011. "A Bayesian Evidence Synthesis for Estimating Campylobacteriosis Prevalence," Risk Analysis, John Wiley & Sons, vol. 31(7), pages 1141-1155, July.
    2. McCandless Lawrence C., 2012. "Meta-Analysis of Observational Studies with Unmeasured Confounders," The International Journal of Biostatistics, De Gruyter, vol. 8(2), pages 1-31, January.
    3. K. M. Rhodes & J. Savović & R. Elbers & H. E. Jones & J. P. T. Higgins & J. A. C. Sterne & N. J. Welton & R. M. Turner, 2020. "Adjusting trial results for biases in meta‐analysis: combining data‐based evidence on bias with detailed trial assessment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 193-209, January.
    4. Rebecca M. Turner & David J. Spiegelhalter & Gordon C. S. Smith & Simon G. Thompson, 2009. "Bias modelling in evidence synthesis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 21-47, January.
    5. S. Dias & N. J. Welton & V. C. C. Marinho & G. Salanti & J. P. T. Higgins & A. E. Ades, 2010. "Estimation and adjustment of bias in randomized evidence by using mixed treatment comparison meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(3), pages 613-629, July.
    6. Giancarlo MANZI & Pier Alda FERRARI, "undated". "Statistical methods for evaluating satisfaction with public services Abstract: Contrary to private enterprises, public enterprises can be unaware of the impact of their performance when providing serv," CIRIEC Working Papers 1404, CIRIEC - Université de Liège.
    7. Geneletti, Sara & Mason, Alexina & Best, Nicky, 2011. "Adjusting for selection effects in epidemiologic studies: why sensitivity analysis is the only “solution”," LSE Research Online Documents on Economics 31520, London School of Economics and Political Science, LSE Library.
    8. Patricia Guyot & Anthony E. Ades & Matthew Beasley & Béranger Lueza & Jean-Pierre Pignon & Nicky J. Welton, 2017. "Extrapolation of Survival Curves from Cancer Trials Using External Information," Medical Decision Making, , vol. 37(4), pages 353-366, May.
    9. Karla Hemming & Peter J Chilton & Richard J Lilford & Anthony Avery & Aziz Sheikh, 2012. "Bayesian Cohort and Cross-Sectional Analyses of the PINCER Trial: A Pharmacist-Led Intervention to Reduce Medication Errors in Primary Care," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-8, June.
    10. Christopher H. Jackson & Linda D. Sharples & Simon G. Thompson, 2010. "Structural and parameter uncertainty in Bayesian cost‐effectiveness models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 233-253, March.
    11. Danila Azzolina & Paola Berchialla & Dario Gregori & Ileana Baldi, 2021. "Prior Elicitation for Use in Clinical Trial Design and Analysis: A Literature Review," IJERPH, MDPI, vol. 18(4), pages 1-21, February.
    12. van der Bles, Anne Marthe & van der Liden, Sander & Freeman, Alessandra L. J. & Mitchell, James & Galvao, Ana Beatriz & Spiegelhalter, David J., 2019. "Communicating uncertainty about facts, numbers, and science," EMF Research Papers 22, Economic Modelling and Forecasting Group.
    13. Desiree C Wilks & Stephen J Sharp & Ulf Ekelund & Simon G Thompson & Adrian P Mander & Rebecca M Turner & Susan A Jebb & Anna Karin Lindroos, 2011. "Objectively Measured Physical Activity and Fat Mass in Children: A Bias-Adjusted Meta-Analysis of Prospective Studies," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-8, February.
    14. Woertman, Willem & Vermeulen, Bram & Groenewoud, Hans & van der Wilt, Gert Jan, 2013. "Evidence based policy decisions through a Bayesian approach: The case of a statin appraisal in the Netherlands," Health Policy, Elsevier, vol. 112(3), pages 234-240.
    15. Mathur, Maya B & VanderWeele, Tyler, 2018. "Statistical methods for evidence synthesis," Thesis Commons kd6ja, Center for Open Science.
    16. John J. Graff & Nalini Sathiakumar & Maurizio Macaluso & George Maldonado & Robert Matthews & Elizabeth Delzell, 2009. "The Effect of Uncertainty in Exposure Estimation on the Exposure-Response Relation between 1,3-Butadiene and Leukemia," IJERPH, MDPI, vol. 6(9), pages 1-20, September.
    17. Ian Wadsworth & Lisa V. Hampson & Thomas Jaki & Graeme J. Sills & Anthony G. Marson & Richard Appleton, 2020. "A quantitative framework to inform extrapolation decisions in children," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 515-534, February.
    18. Rebecca M Turner & Myfanwy Lloyd-Jones & Dilly O C Anumba & Gordon C S Smith & David J Spiegelhalter & Hazel Squires & John W Stevens & Michael J Sweeting & Stanislaw J Urbaniak & Robert Webster & Sim, 2012. "Routine Antenatal Anti-D Prophylaxis in Women Who Are Rh(D) Negative: Meta-Analyses Adjusted for Differences in Study Design and Quality," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-10, February.
    19. Davis, Alexander L. & Krishnamurti, Tamar & Fischhoff, Baruch & Bruine de Bruin, Wandi, 2013. "Setting a standard for electricity pilot studies," Energy Policy, Elsevier, vol. 62(C), pages 401-409.
    20. Giancarlo Manzi & David J. Spiegelhalter & Rebecca M. Turner & Julian Flowers & Simon G. Thompson, 2011. "Modelling bias in combining small area prevalence estimates from multiple surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(1), pages 31-50, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0025635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.