IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v59y2010i2p233-253.html
   My bibliography  Save this article

Structural and parameter uncertainty in Bayesian cost‐effectiveness models

Author

Listed:
  • Christopher H. Jackson
  • Linda D. Sharples
  • Simon G. Thompson

Abstract

Summary. Health economic decision models are subject to various forms of uncertainty, including uncertainty about the parameters of the model and about the model structure. These uncertainties can be handled within a Bayesian framework, which also allows evidence from previous studies to be combined with the data. As an example, we consider a Markov model for assessing the cost‐effectiveness of implantable cardioverter defibrillators. Using Markov chain Monte Carlo posterior simulation, uncertainty about the parameters of the model is formally incorporated in the estimates of expected cost and effectiveness. We extend these methods to include uncertainty about the choice between plausible model structures. This is accounted for by averaging the posterior distributions from the competing models using weights that are derived from the pseudo‐marginal‐likelihood and the deviance information criterion, which are measures of expected predictive utility. We also show how these cost‐effectiveness calculations can be performed efficiently in the widely used software WinBUGS.

Suggested Citation

  • Christopher H. Jackson & Linda D. Sharples & Simon G. Thompson, 2010. "Structural and parameter uncertainty in Bayesian cost‐effectiveness models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 233-253, March.
  • Handle: RePEc:bla:jorssc:v:59:y:2010:i:2:p:233-253
    DOI: 10.1111/j.1467-9876.2009.00684.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9876.2009.00684.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9876.2009.00684.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    2. Briggs, Andrew & Sculpher, Mark & Claxton, Karl, 2006. "Decision Modelling for Health Economic Evaluation," OUP Catalogue, Oxford University Press, number 9780198526629.
    3. Jackson, Christopher H, 2008. "Displaying Uncertainty With Shading," The American Statistician, American Statistical Association, vol. 62(4), pages 340-347.
    4. Christopher H. Jackson & Simon G. Thompson & Linda D. Sharples, 2009. "Accounting for uncertainty in health economic decision models by using model averaging," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(2), pages 383-404, April.
    5. Rebecca M. Turner & David J. Spiegelhalter & Gordon C. S. Smith & Simon G. Thompson, 2009. "Bias modelling in evidence synthesis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 21-47, January.
    6. Nicola J. Cooper & Alex J. Sutton & Keith R. Abrams & David Turner & Allan Wailoo, 2004. "Comprehensive decision analytical modelling in economic evaluation: a Bayesian approach," Health Economics, John Wiley & Sons, Ltd., vol. 13(3), pages 203-226, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel A. Negrín & Julian Nam & Andrew H. Briggs, 2017. "Bayesian Solutions for Handling Uncertainty in Survival Extrapolation," Medical Decision Making, , vol. 37(4), pages 367-376, May.
    2. Jackson Christopher H & Sharples Linda D & Thompson Simon G, 2010. "Survival Models in Health Economic Evaluations: Balancing Fit and Parsimony to Improve Prediction," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-31, October.
    3. Miguel A. Negrín & Francisco J. Vázquez-Polo & María Martel & Elías Moreno & Francisco J. Girón, 2010. "Bayesian Variable Selection in Cost-Effectiveness Analysis," IJERPH, MDPI, vol. 7(4), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Gabrio & Michael J. Daniels & Gianluca Baio, 2020. "A Bayesian parametric approach to handle missing longitudinal outcome data in trial‐based health economic evaluations," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 607-629, February.
    2. Jackson Christopher H & Sharples Linda D & Thompson Simon G, 2010. "Survival Models in Health Economic Evaluations: Balancing Fit and Parsimony to Improve Prediction," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-31, October.
    3. Yasuhiro Hagiwara & Takeru Shiroiwa, 2022. "Estimating Value-Based Price and Quantifying Uncertainty around It in Health Technology Assessment: Frequentist and Bayesian Approaches," Medical Decision Making, , vol. 42(5), pages 672-683, July.
    4. S. Dias & N. J. Welton & V. C. C. Marinho & G. Salanti & J. P. T. Higgins & A. E. Ades, 2010. "Estimation and adjustment of bias in randomized evidence by using mixed treatment comparison meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(3), pages 613-629, July.
    5. Richard Grieve & John Cairns & Simon G. Thompson, 2010. "Improving costing methods in multicentre economic evaluation: the use of multiple imputation for unit costs," Health Economics, John Wiley & Sons, Ltd., vol. 19(8), pages 939-954, August.
    6. Andrija S Grustam & Nasuh Buyukkaramikli & Ron Koymans & Hubertus J M Vrijhoef & Johan L Severens, 2019. "Value of information analysis in telehealth for chronic heart failure management," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-23, June.
    7. Christopher H. Jackson & Simon G. Thompson & Linda D. Sharples, 2009. "Accounting for uncertainty in health economic decision models by using model averaging," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(2), pages 383-404, April.
    8. Anna Heath & Ioanna Manolopoulou & Gianluca Baio, 2017. "A Review of Methods for Analysis of the Expected Value of Information," Medical Decision Making, , vol. 37(7), pages 747-758, October.
    9. Alexina J. Mason & Manuel Gomes & James Carpenter & Richard Grieve, 2021. "Flexible Bayesian longitudinal models for cost‐effectiveness analyses with informative missing data," Health Economics, John Wiley & Sons, Ltd., vol. 30(12), pages 3138-3158, December.
    10. Ian Wadsworth & Lisa V. Hampson & Thomas Jaki & Graeme J. Sills & Anthony G. Marson & Richard Appleton, 2020. "A quantitative framework to inform extrapolation decisions in children," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 515-534, February.
    11. Giancarlo Manzi & David J. Spiegelhalter & Rebecca M. Turner & Julian Flowers & Simon G. Thompson, 2011. "Modelling bias in combining small area prevalence estimates from multiple surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(1), pages 31-50, January.
    12. Marta Soares & Luísa Canto e Castro, 2012. "Continuous Time Simulation and Discretized Models for Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 30(12), pages 1101-1117, December.
    13. Christopher H. Jackson & Laura Bojke & Simon G. Thompson & Karl Claxton & Linda D. Sharples, 2011. "A Framework for Addressing Structural Uncertainty in Decision Models," Medical Decision Making, , vol. 31(4), pages 662-674, July.
    14. Christopher H. Jackson & Mark Jit & Linda D. Sharples & Daniela De Angelis, 2015. "Calibration of Complex Models through Bayesian Evidence Synthesis," Medical Decision Making, , vol. 35(2), pages 148-161, February.
    15. Marta O Soares & L Canto e Castro, 2010. "Simulation or cohort models? Continuous time simulation and discretized Markov models to estimate cost-effectiveness," Working Papers 056cherp, Centre for Health Economics, University of York.
    16. Marta O. Soares & Luísa Canto e Castro, 2012. "Continuous Time Simulation and Discretized Models for Cost-Effectiveness Analysis," PharmacoEconomics, Springer, vol. 30(12), pages 1101-1117, December.
    17. Chiranjeev Sanyal & Don Husereau, 2020. "Systematic Review of Economic Evaluations of Services Provided by Community Pharmacists," Applied Health Economics and Health Policy, Springer, vol. 18(3), pages 375-392, June.
    18. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    19. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    20. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:59:y:2010:i:2:p:233-253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.