IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0023428.html
   My bibliography  Save this article

Area Disease Estimation Based on Sentinel Hospital Records

Author

Listed:
  • Jin-Feng Wang
  • Ben Y Reis
  • Mao-Gui Hu
  • George Christakos
  • Wei-Zhong Yang
  • Qiao Sun
  • Zhong-Jie Li
  • Xiao-Zhou Li
  • Sheng-Jie Lai
  • Hong-Yan Chen
  • Dao-Chen Wang

Abstract

Background: Population health attributes (such as disease incidence and prevalence) are often estimated using sentinel hospital records, which are subject to multiple sources of uncertainty. When applied to these health attributes, commonly used biased estimation techniques can lead to false conclusions and ineffective disease intervention and control. Although some estimators can account for measurement error (in the form of white noise, usually after de-trending), most mainstream health statistics techniques cannot generate unbiased and minimum error variance estimates when the available data are biased. Methods and Findings: A new technique, called the Biased Sample Hospital-based Area Disease Estimation (B-SHADE), is introduced that generates space-time population disease estimates using biased hospital records. The effectiveness of the technique is empirically evaluated in terms of hospital records of disease incidence (for hand-foot-mouth disease and fever syndrome cases) in Shanghai (China) during a two-year period. The B-SHADE technique uses a weighted summation of sentinel hospital records to derive unbiased and minimum error variance estimates of area incidence. The calculation of these weights is the outcome of a process that combines: the available space-time information; a rigorous assessment of both, the horizontal relationships between hospital records and the vertical links between each hospital's records and the overall disease situation in the region. In this way, the representativeness of the sentinel hospital records was improved, the possible biases of these records were corrected, and the generated area incidence estimates were best linear unbiased estimates (BLUE). Using the same hospital records, the performance of the B-SHADE technique was compared against two mainstream estimators. Conclusions: The B-SHADE technique involves a hospital network-based model that blends the optimal estimation features of the Block Kriging method and the sample bias correction efficiency of the ratio estimator method. In this way, B-SHADE can overcome the limitations of both methods: Block Kriging's inadequacy concerning the correction of sample bias and spatial clustering; and the ratio estimator's limitation as regards error minimization. The generality of the B-SHADE technique is further demonstrated by the fact that it reduces to Block Kriging in the case of unbiased samples; to ratio estimator if there is no correlation between hospitals; and to simple statistic if the hospital records are neither biased nor space-time correlated. In addition to the theoretical advantages of the B-SHADE technique over the two other methods above, two real world case studies (hand-foot-mouth disease and fever syndrome cases) demonstrated its empirical superiority, as well.

Suggested Citation

  • Jin-Feng Wang & Ben Y Reis & Mao-Gui Hu & George Christakos & Wei-Zhong Yang & Qiao Sun & Zhong-Jie Li & Xiao-Zhou Li & Sheng-Jie Lai & Hong-Yan Chen & Dao-Chen Wang, 2011. "Area Disease Estimation Based on Sentinel Hospital Records," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-8, August.
  • Handle: RePEc:plo:pone00:0023428
    DOI: 10.1371/journal.pone.0023428
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0023428
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0023428&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0023428?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    2. Declan Butler, 2010. "Verbal autopsy methods questioned," Nature, Nature, vol. 467(7319), pages 1015-1015, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanguang Chen, 2015. "A New Methodology of Spatial Cross-Correlation Analysis," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-20, May.
    2. Qiong Li & Juanle Wang & Hongquan Xie & Altansukh Ochir & Davaadorj Davaasuren, 2022. "Applicability of Grassland Production Estimation Using Remote Sensing for the Mongolian Plateau by Comparing Typical Regions in China and Mongolia," Sustainability, MDPI, vol. 14(5), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Darima Fotheringham & Michael A. Wiles, 2023. "The effect of implementing chatbot customer service on stock returns: an event study analysis," Journal of the Academy of Marketing Science, Springer, vol. 51(4), pages 802-822, July.
    2. Song, Wei-Ling & Uzmanoglu, Cihan, 2016. "TARP announcement, bank health, and borrowers’ credit risk," Journal of Financial Stability, Elsevier, vol. 22(C), pages 22-32.
    3. Raymundo M. Campos-Vázquez, 2013. "Efectos de los ingresos no reportados en el nivel y tendencia de la pobreza laboral en México," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(2), pages 23-54, November.
    4. Stephen Brown & William Goetzmann & Bing Liang & Christopher Schwarz, 2008. "Mandatory Disclosure and Operational Risk: Evidence from Hedge Fund Registration," Journal of Finance, American Finance Association, vol. 63(6), pages 2785-2815, December.
    5. Paul W. Miller & Barry R. Chiswick, 2002. "Immigrant earnings: Language skills, linguistic concentrations and the business cycle," Journal of Population Economics, Springer;European Society for Population Economics, vol. 15(1), pages 31-57.
    6. Chul‐Woo Kwon & Peter F. Orazem & Daniel M. Otto, 2006. "Off‐farm labor supply responses to permanent and transitory farm income," Agricultural Economics, International Association of Agricultural Economists, vol. 34(1), pages 59-67, January.
    7. Jonathan Gruber & Aaron Yelowitz, 1999. "Public Health Insurance and Private Savings," Journal of Political Economy, University of Chicago Press, vol. 107(6), pages 1249-1274, December.
    8. Jean-Louis Arcand & Linguère M'Baye, 2013. "Braving the waves: the role of time and risk preferences in illegal migration from Senegal," CERDI Working papers halshs-00855937, HAL.
    9. Sandra Müllbacher & Wolfgang Nagl, 2017. "Labour supply in Austria: an assessment of recent developments and the effects of a tax reform," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 44(3), pages 465-486, August.
    10. Campbell, Randall C. & Nagel, Gregory L., 2016. "Private information and limitations of Heckman's estimator in banking and corporate finance research," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 186-195.
    11. Leye Li & Louise Yi Lu & Dongyue Wang, 2022. "External labour market competitions and stock price crash risk: evidence from exposures to competitor CEOs’ award‐winning events," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 62(S1), pages 1421-1460, April.
    12. Jože P. Damijan & Mark Knell, 2005. "How Important Is Trade and Foreign Ownership in Closing the Technology Gap? Evidence from Estonia and Slovenia," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 141(2), pages 271-295, July.
    13. Calcagno, R. & Renneboog, L.D.R., 2004. "Capital Structure and Managerial Compensation : The Effects of Renumeration Seniority," Discussion Paper 2004-120, Tilburg University, Center for Economic Research.
    14. Nakashima, Kiyotaka & Ogawa, Toshiaki, 2020. "The Impacts of Strengthening Regulatory Surveillance on Bank Behavior: A Dynamic Analysis from Incomplete to Complete Enforcement of Capital Regulation in Microprudential Policy," MPRA Paper 99938, University Library of Munich, Germany.
    15. Sarah Bridges & David Lawson, 2008. "Health and Labour Market Participation in Uganda," WIDER Working Paper Series DP2008-07, World Institute for Development Economic Research (UNU-WIDER).
    16. Ahn T. Le, 2003. "Female Labour Market Participation: Differences Between Primary and Tied Movers," Economics Discussion / Working Papers 03-17, The University of Western Australia, Department of Economics.
    17. Inmaculada Garc�a-Mainar & V�ctor M. Montuenga-G�mez, 2017. "Subjective educational mismatch and signalling in Spain," Documentos de Trabajo dt2017-03, Facultad de Ciencias Económicas y Empresariales, Universidad de Zaragoza.
    18. Insik Min & Jong‐Ho Kim, 2003. "Modeling Credit Card Borrowing: A Comparison of Type I and Type II Tobit Approaches," Southern Economic Journal, John Wiley & Sons, vol. 70(1), pages 128-143, July.
    19. Son K. Lam & Thomas E. DeCarlo & Ashish Sharma, 2019. "Salesperson ambidexterity in customer engagement: do customer base characteristics matter?," Journal of the Academy of Marketing Science, Springer, vol. 47(4), pages 659-680, July.
    20. Bertoli, Simone & Dequiedt, Vianney & Zenou, Yves, 2016. "Can selective immigration policies reduce migrants' quality?," Journal of Development Economics, Elsevier, vol. 119(C), pages 100-109.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0023428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.