IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0018634.html
   My bibliography  Save this article

Discretization Provides a Conceptually Simple Tool to Build Expression Networks

Author

Listed:
  • J Keith Vass
  • Desmond J Higham
  • Manikhandan A V Mudaliar
  • Xuerong Mao
  • Daniel J Crowther

Abstract

Biomarker identification, using network methods, depends on finding regular co-expression patterns; the overall connectivity is of greater importance than any single relationship. A second requirement is a simple algorithm for ranking patients on how relevant a gene-set is. For both of these requirements discretized data helps to first identify gene cliques, and then to stratify patients. We explore a biologically intuitive discretization technique which codes genes as up- or down-regulated, with values close to the mean set as unchanged; this allows a richer description of relationships between genes than can be achieved by positive and negative correlation. We find a close agreement between our results and the template gene-interactions used to build synthetic microarray-like data by SynTReN, which synthesizes “microarray” data using known relationships which are successfully identified by our method. We are able to split positive co-regulation into up-together and down-together and negative co-regulation is considered as directed up-down relationships. In some cases these exist in only one direction, with real data, but not with the synthetic data. We illustrate our approach using two studies on white blood cells and derived immortalized cell lines and compare the approach with standard correlation-based computations. No attempt is made to distinguish possible causal links as the search for biomarkers would be crippled by losing highly significant co-expression relationships. This contrasts with approaches like ARACNE and IRIS. The method is illustrated with an analysis of gene-expression for energy metabolism pathways. For each discovered relationship we are able to identify the samples on which this is based in the discretized sample-gene matrix, along with a simplified view of the patterns of gene expression; this helps to dissect the gene-sample relevant to a research topic - identifying sets of co-regulated and anti-regulated genes and the samples or patients in which this relationship occurs.

Suggested Citation

  • J Keith Vass & Desmond J Higham & Manikhandan A V Mudaliar & Xuerong Mao & Daniel J Crowther, 2011. "Discretization Provides a Conceptually Simple Tool to Build Expression Networks," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-12, April.
  • Handle: RePEc:plo:pone00:0018634
    DOI: 10.1371/journal.pone.0018634
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0018634
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0018634&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0018634?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vivian G. Cheung & Richard S. Spielman & Kathryn G. Ewens & Teresa M. Weber & Michael Morley & Joshua T. Burdick, 2005. "Mapping determinants of human gene expression by regional and genome-wide association," Nature, Nature, vol. 437(7063), pages 1365-1369, October.
    2. Michael Morley & Cliona M. Molony & Teresa M. Weber & James L. Devlin & Kathryn G. Ewens & Richard S. Spielman & Vivian G. Cheung, 2004. "Genetic analysis of genome-wide variation in human gene expression," Nature, Nature, vol. 430(7001), pages 743-747, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yixin Fang & Yang Feng & Ming Yuan, 2014. "Regularized principal components of heritability," Computational Statistics, Springer, vol. 29(3), pages 455-465, June.
    2. Federico Innocenti & Gregory M Cooper & Ian B Stanaway & Eric R Gamazon & Joshua D Smith & Snezana Mirkov & Jacqueline Ramirez & Wanqing Liu & Yvonne S Lin & Cliona Moloney & Shelly Force Aldred & Nat, 2011. "Identification, Replication, and Functional Fine-Mapping of Expression Quantitative Trait Loci in Primary Human Liver Tissue," PLOS Genetics, Public Library of Science, vol. 7(5), pages 1-16, May.
    3. Barbara E Stranger & Stephen B Montgomery & Antigone S Dimas & Leopold Parts & Oliver Stegle & Catherine E Ingle & Magda Sekowska & George Davey Smith & David Evans & Maria Gutierrez-Arcelus & Alkes P, 2012. "Patterns of Cis Regulatory Variation in Diverse Human Populations," PLOS Genetics, Public Library of Science, vol. 8(4), pages 1-13, April.
    4. Ryan Abo & Gregory D Jenkins & Liewei Wang & Brooke L Fridley, 2012. "Identifying the Genetic Variation of Gene Expression Using Gene Sets: Application of Novel Gene Set eQTL Approach to PharmGKB and KEGG," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-11, August.
    5. Jin Hyun Ju & Sushila A Shenoy & Ronald G Crystal & Jason G Mezey, 2017. "An independent component analysis confounding factor correction framework for identifying broad impact expression quantitative trait loci," PLOS Computational Biology, Public Library of Science, vol. 13(5), pages 1-26, May.
    6. Ning Jiang & Minghui Wang & Tianye Jia & Lin Wang & Lindsey Leach & Christine Hackett & David Marshall & Zewei Luo, 2011. "A Robust Statistical Method for Association-Based eQTL Analysis," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-11, August.
    7. Paul C Boutros & Ivy D Moffat & Allan B Okey & Raimo Pohjanvirta, 2011. "mRNA Levels in Control Rat Liver Display Strain-Specific, Hereditary, and AHR-Dependent Components," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-15, July.
    8. Hui-Min Wang & Ching-Lin Hsiao & Ai-Ru Hsieh & Ying-Chao Lin & Cathy S J Fann, 2012. "Constructing Endophenotypes of Complex Diseases Using Non-Negative Matrix Factorization and Adjusted Rand Index," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-12, July.
    9. Julia Schröder & Vitalia Schüller & Andrea May & Christian Gerges & Mario Anders & Jessica Becker & Timo Hess & Nicole Kreuser & René Thieme & Kerstin U Ludwig & Tania Noder & Marino Venerito & Lothar, 2019. "Identification of loci of functional relevance to Barrett’s esophagus and esophageal adenocarcinoma: Cross-referencing of expression quantitative trait loci data from disease-relevant tissues with gen," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-12, December.
    10. Bo Jiang & Jun S. Liu, 2015. "Bayesian Partition Models for Identifying Expression Quantitative Trait Loci," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1350-1361, December.
    11. Witten Daniela M & Tibshirani Robert J., 2009. "Extensions of Sparse Canonical Correlation Analysis with Applications to Genomic Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-29, June.
    12. Lingxue Zhang & Seyoung Kim, 2014. "Learning Gene Networks under SNP Perturbations Using eQTL Datasets," PLOS Computational Biology, Public Library of Science, vol. 10(2), pages 1-20, February.
    13. Cipolli III, William & Hanson, Timothy & McLain, Alexander C., 2016. "Bayesian nonparametric multiple testing," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 64-79.
    14. Eric R Gamazon & Hae-Kyung Im & Shiwei Duan & Yves A Lussier & Nancy J Cox & M Eileen Dolan & Wei Zhang, 2010. "ExprTarget: An Integrative Approach to Predicting Human MicroRNA Targets," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-8, October.
    15. Mitsutaka Kadota & Howard H Yang & Nan Hu & Chaoyu Wang & Ying Hu & Philip R Taylor & Kenneth H Buetow & Maxwell P Lee, 2007. "Allele-Specific Chromatin Immunoprecipitation Studies Show Genetic Influence on Chromatin State in Human Genome," PLOS Genetics, Public Library of Science, vol. 3(5), pages 1-11, May.
    16. Oualkacha Karim & Labbe Aurelie & Ciampi Antonio & Roy Marc-Andre & Maziade Michel, 2012. "Principal Components of Heritability for High Dimension Quantitative Traits and General Pedigrees," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(2), pages 1-27, January.
    17. Enrico Petretto & Leonardo Bottolo & Sarah R Langley & Matthias Heinig & Chris McDermott-Roe & Rizwan Sarwar & Michal Pravenec & Norbert Hübner & Timothy J Aitman & Stuart A Cook & Sylvia Richardson, 2010. "New Insights into the Genetic Control of Gene Expression using a Bayesian Multi-tissue Approach," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-13, April.
    18. Bergersen Linn Cecilie & Glad Ingrid K. & Lyng Heidi, 2011. "Weighted Lasso with Data Integration," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-29, August.
    19. Andy G Lynch & Suet-Feung Chin & Mark J Dunning & Carlos Caldas & Simon Tavaré & Christina Curtis, 2012. "Calling Sample Mix-Ups in Cancer Population Studies," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-12, August.
    20. Parkhomenko Elena & Tritchler David & Beyene Joseph, 2009. "Sparse Canonical Correlation Analysis with Application to Genomic Data Integration," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-36, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0018634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.