IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0017835.html
   My bibliography  Save this article

Early Estimation of the Reproduction Number in the Presence of Imported Cases: Pandemic Influenza H1N1-2009 in New Zealand

Author

Listed:
  • Michael George Roberts
  • Hiroshi Nishiura

Abstract

We analyse data from the early epidemic of H1N1-2009 in New Zealand, and estimate the reproduction number . We employ a renewal process which accounts for imported cases, illustrate some technical pitfalls, and propose a novel estimation method to address these pitfalls. Explicitly accounting for the infection-age distribution of imported cases and for the delay in transmission dynamics due to international travel, was estimated to be (95% confidence interval: ). Hence we show that a previous study, which did not account for these factors, overestimated . Our approach also permitted us to examine the infection-age at which secondary transmission occurs as a function of calendar time, demonstrating the downward bias during the beginning of the epidemic. These technical issues may compromise the usefulness of a well-known estimator of - the inverse of the moment-generating function of the generation time given the intrinsic growth rate. Explicit modelling of the infection-age distribution among imported cases and the examination of the time dependency of the generation time play key roles in avoiding a biased estimate of , especially when one only has data covering a short time interval during the early growth phase of the epidemic.

Suggested Citation

  • Michael George Roberts & Hiroshi Nishiura, 2011. "Early Estimation of the Reproduction Number in the Presence of Imported Cases: Pandemic Influenza H1N1-2009 in New Zealand," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-9, May.
  • Handle: RePEc:plo:pone00:0017835
    DOI: 10.1371/journal.pone.0017835
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0017835
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0017835&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0017835?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gabriele Neumann & Takeshi Noda & Yoshihiro Kawaoka, 2009. "Emergence and pandemic potential of swine-origin H1N1 influenza virus," Nature, Nature, vol. 459(7249), pages 931-939, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Qiuhui & Gao, Ting & He, Mingfeng, 2020. "Influence of isolation measures for patients with mild symptoms on the spread of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ricardo Aguas & Neil M Ferguson, 2013. "Feature Selection Methods for Identifying Genetic Determinants of Host Species in RNA Viruses," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-10, October.
    2. Christian Sieben & Erdinc Sezgin & Christian Eggeling & Suliana Manley, 2020. "Influenza A viruses use multivalent sialic acid clusters for cell binding and receptor activation," PLOS Pathogens, Public Library of Science, vol. 16(7), pages 1-27, July.
    3. Tony Marion & Husni Elbahesh & Paul G Thomas & John P DeVincenzo & Richard Webby & Klaus Schughart, 2016. "Respiratory Mucosal Proteome Quantification in Human Influenza Infections," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-16, April.
    4. Suman R Das & Pere Puigbò & Scott E Hensley & Darrell E Hurt & Jack R Bennink & Jonathan W Yewdell, 2010. "Glycosylation Focuses Sequence Variation in the Influenza A Virus H1 Hemagglutinin Globular Domain," PLOS Pathogens, Public Library of Science, vol. 6(11), pages 1-13, November.
    5. Lee, Choong-Ki & Song, Hak-Jun & Bendle, Lawrence J. & Kim, Myung-Ja & Han, Heesup, 2012. "The impact of non-pharmaceutical interventions for 2009 H1N1 influenza on travel intentions: A model of goal-directed behavior," Tourism Management, Elsevier, vol. 33(1), pages 89-99.
    6. Tobias S Brett & Pejman Rohani, 2020. "Dynamical footprints enable detection of disease emergence," PLOS Biology, Public Library of Science, vol. 18(5), pages 1-20, May.
    7. Folinas, Sotiris & Metaxas, Theodore, 2020. "‘Tourism: The Great Patient of Coronavirus COVID-2019’," MPRA Paper 99666, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0017835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.