IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0011384.html
   My bibliography  Save this article

A General Model for Multilocus Epistatic Interactions in Case-Control Studies

Author

Listed:
  • Zhong Wang
  • Tian Liu
  • Zhenwu Lin
  • John Hegarty
  • Walter A Koltun
  • Rongling Wu

Abstract

Background: Epistasis, i.e., the interaction of alleles at different loci, is thought to play a central role in the formation and progression of complex diseases. The complexity of disease expression should arise from a complex network of epistatic interactions involving multiple genes. Methodology: We develop a general model for testing high-order epistatic interactions for a complex disease in a case-control study. We incorporate the quantitative genetic theory of high-order epistasis into the setting of cases and controls sampled from a natural population. The new model allows the identification and testing of epistasis and its various genetic components. Conclusions: Simulation studies were used to examine the power and false positive rates of the model under different sampling strategies. The model was used to detect epistasis in a case-control study of inflammatory bowel disease, in which five SNPs at a candidate gene were typed, leading to the identification of a significant three-locus epistasis.

Suggested Citation

  • Zhong Wang & Tian Liu & Zhenwu Lin & John Hegarty & Walter A Koltun & Rongling Wu, 2010. "A General Model for Multilocus Epistatic Interactions in Case-Control Studies," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-9, August.
  • Handle: RePEc:plo:pone00:0011384
    DOI: 10.1371/journal.pone.0011384
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0011384
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0011384&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0011384?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Todd L Edwards & Stephen D Turner & Eric S Torstenson & Scott M Dudek & Eden R Martin & Marylyn D Ritchie, 2010. "A General Framework for Formal Tests of Interaction after Exhaustive Search Methods with Applications to MDR and MDR-PDT," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-8, February.
    2. Nunkesser, Robin & Bernholt, Thorsten & Schwender, Holger & Ickstadt, Katja & Wegener, Ing, 2007. "Detecting high-order interactions of single nucleotide polymorphisms using genetic programming," Technical Reports 2007,24, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gang Fang & Majda Haznadar & Wen Wang & Haoyu Yu & Michael Steinbach & Timothy R Church & William S Oetting & Brian Van Ness & Vipin Kumar, 2012. "High-Order SNP Combinations Associated with Complex Diseases: Efficient Discovery, Statistical Power and Functional Interactions," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rocco, Claudio M. & Hernandez-Perdomo, Elvis & Mun, Johnathan, 2021. "Application of logic regression to assess the importance of interactions between components in a network," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    2. Nunkesser, Robin & Morell, Oliver, 2008. "Evolutionary algorithms for robust methods," Technical Reports 2008,29, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    3. Nunkesser, Robin, 2008. "RFreak-An R-package for evolutionary computation," Technical Reports 2008,12, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    4. Schwender, Holger & Ickstadt, Katja, 2008. "Imputing missing genotypes with weighted k nearest neighbors," Technical Reports 2008,03, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0011384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.