IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0010911.html
   My bibliography  Save this article

Community-Based Measures for Mitigating the 2009 H1N1 Pandemic in China

Author

Listed:
  • Sanyi Tang
  • Yanni Xiao
  • Youping Yang
  • Yicang Zhou
  • Jianhong Wu
  • Zhien Ma

Abstract

Since the emergence of influenza A/H1N1 pandemic virus in March–April 2009, very stringent interventions including Fengxiao were implemented to prevent importation of infected cases and decelerate the disease spread in mainland China. The extent to which these measures have been effective remains elusive. We sought to investigate the effectiveness of Fengxiao that may inform policy decisions on improving community-based interventions for management of on-going outbreaks in China, in particular during the Spring Festival in mid-February 2010 when nationwide traveling will be substantially increased. We obtained data on initial laboratory-confirmed cases of H1N1 in the province of Shaanxi and used Markov-chain Monte-Carlo (MCMC) simulations to estimate the reproduction number. Given the estimates for the exposed and infectious periods of the novel H1N1 virus, we estimated a mean reproduction number of 1.68 (95% CI 1.45–1.92) and other A/H1N1 epidemiological parameters. Our results based on a spatially stratified population dynamical model show that the early implementation of Fengxiao can delay the epidemic peak significantly and prevent the disease spread to the general population but may also, if not implemented appropriately, cause more severe outbreak within universities/colleges, while late implementation of Fengxiao can achieve nothing more than no implementation. Strengthening local control strategies (quarantine and hygiene precaution) is much more effective in mitigating outbreaks and inhibiting the successive waves than implementing Fengxiao. Either strong mobility or high transport-related transmission rate during the Spring Festival holiday will not reverse the ongoing outbreak, but both will result in a large new wave. The findings suggest that Fengxiao and travel precautions should not be relaxed unless strict measures of quarantine, isolation, and hygiene precaution practices are put in place. Integration and prompt implementation of these interventions can significantly reduce the overall attack rate of pandemic outbreaks.

Suggested Citation

  • Sanyi Tang & Yanni Xiao & Youping Yang & Yicang Zhou & Jianhong Wu & Zhien Ma, 2010. "Community-Based Measures for Mitigating the 2009 H1N1 Pandemic in China," PLOS ONE, Public Library of Science, vol. 5(6), pages 1-11, June.
  • Handle: RePEc:plo:pone00:0010911
    DOI: 10.1371/journal.pone.0010911
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0010911
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0010911&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0010911?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Helen J Wearing & Pejman Rohani & Matt J Keeling, 2005. "Appropriate Models for the Management of Infectious Diseases," PLOS Medicine, Public Library of Science, vol. 2(7), pages 1-1, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lahrouz, A. & El Mahjour, H. & Settati, A. & Bernoussi, A., 2018. "Dynamics and optimal control of a non-linear epidemic model with relapse and cure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 299-317.
    2. Richard C. Larson, 2007. "Simple Models of Influenza Progression Within a Heterogeneous Population," Operations Research, INFORMS, vol. 55(3), pages 399-412, June.
    3. Denis Valle & James Clark, 2013. "Improving the Modeling of Disease Data from the Government Surveillance System: A Case Study on Malaria in the Brazilian Amazon," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-14, November.
    4. Robin N Thompson & Christopher A Gilligan & Nik J Cunniffe, 2016. "Detecting Presymptomatic Infection Is Necessary to Forecast Major Epidemics in the Earliest Stages of Infectious Disease Outbreaks," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-18, April.
    5. Céline Christiansen-Jucht & Kamil Erguler & Chee Yan Shek & María-Gloria Basáñez & Paul E. Parham, 2015. "Modelling Anopheles gambiae s.s. Population Dynamics with Temperature- and Age-Dependent Survival," IJERPH, MDPI, vol. 12(6), pages 1-31, May.
    6. Rozan, E.A. & Kuperman, M.N. & Bouzat, S., 2024. "The importance of the incubation time distribution in compartmental epidemiological models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
    7. Victoria Chebotaeva & Paula A. Vasquez, 2023. "Erlang-Distributed SEIR Epidemic Models with Cross-Diffusion," Mathematics, MDPI, vol. 11(9), pages 1-18, May.
    8. Daniele Proverbio & Françoise Kemp & Stefano Magni & Andreas Husch & Atte Aalto & Laurent Mombaerts & Alexander Skupin & Jorge Gonçalves & Jose Ameijeiras-Alonso & Christophe Ley, 2021. "Dynamical SPQEIR model assesses the effectiveness of non-pharmaceutical interventions against COVID-19 epidemic outbreaks," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-21, May.
    9. Miclo, Laurent & Weibull, Jörgen W. & Spiro, Daniel, 2020. "Optimal epidemic suppression under an ICU constraint," TSE Working Papers 20-1111, Toulouse School of Economics (TSE).
    10. Elisabeta Vergu & Henri Busson & Pauline Ezanno, 2010. "Impact of the Infection Period Distribution on the Epidemic Spread in a Metapopulation Model," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-16, February.
    11. Bekiros, Stelios & Kouloumpou, Dimitra, 2020. "SBDiEM: A new mathematical model of infectious disease dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    12. Carbone, Giuseppe & De Vincenzo, Ilario, 2022. "A general theory for infectious disease dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    13. Masoud Shahmanzari & Fehmi Tanrisever & Enes Eryarsoy & Ahmet Şensoy, 2023. "Managing disease containment measures during a pandemic," Production and Operations Management, Production and Operations Management Society, vol. 32(5), pages 1362-1379, May.
    14. Anna K. Lugnér & Sido D. Mylius & Jacco Wallinga, 2010. "Dynamic versus static models in cost‐effectiveness analyses of anti‐viral drug therapy to mitigate an influenza pandemic," Health Economics, John Wiley & Sons, Ltd., vol. 19(5), pages 518-531, May.
    15. Peace, Angela & O’Regan, Suzanne M. & Spatz, Jennifer A. & Reilly, Patrick N. & Hill, Rachel D. & Carter, E. Davis & Wilkes, Rebecca P. & Waltzek, Thomas B. & Miller, Debra L. & Gray, Matthew J., 2019. "A highly invasive chimeric ranavirus can decimate tadpole populations rapidly through multiple transmission pathways," Ecological Modelling, Elsevier, vol. 410(C), pages 1-1.
    16. Yvonne Kummer & Christian Fikar & Johanna Burtscher & Martina Strobl & Reinhard Fuchs & Konrad J. Domig & Patrick Hirsch, 2022. "Facilitating Resilience during an African Swine Fever Outbreak in the Austrian Pork Supply Chain through Hybrid Simulation Modelling," Agriculture, MDPI, vol. 12(3), pages 1-17, March.
    17. Hornstein Andreas, 2022. "Quarantine, Contact Tracing, and Testing: Implications of an Augmented SEIR Model," The B.E. Journal of Macroeconomics, De Gruyter, vol. 22(1), pages 53-88, January.
    18. Miclo, Laurent & Spiro, Daniel & Weibull, Jörgen, 2022. "Optimal epidemic suppression under an ICU constraint: An analytical solution," Journal of Mathematical Economics, Elsevier, vol. 101(C).
    19. Michael A Johansson & Neysarí Arana-Vizcarrondo & Brad J Biggerstaff & J Erin Staples & Nancy Gallagher & Nina Marano, 2011. "On the Treatment of Airline Travelers in Mathematical Models," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-7, July.
    20. Emma E. Goldberg & Qianying Lin & Ethan O. Romero-Severson & Ruian Ke, 2023. "Swift and extensive Omicron outbreak in China after sudden exit from ‘zero-COVID’ policy," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0010911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.