IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0010303.html
   My bibliography  Save this article

Casein Kinase 1 Delta (CK1δ) Regulates Period Length of the Mouse Suprachiasmatic Circadian Clock In Vitro

Author

Listed:
  • Jean-Pierre Etchegaray
  • Elizabeth A Yu
  • Premananda Indic
  • Robert Dallmann
  • David R Weaver

Abstract

Background: Casein kinase 1 delta (CK1δ) plays a more prominent role in the regulation of circadian cycle length than its homologue casein kinase 1 epsilon (CK1ε) in peripheral tissues such as liver and embryonic fibroblasts. Mice lacking CK1δ die shortly after birth, so it has not been possible to assess the impact of loss of CK1δ on behavioral rhythms controlled by the master circadian oscillator in the suprachiasmatic nuclei (SCN). Methodology/Principal Findings: In the present study, mPER2::LUCIFERASE bioluminescence rhythms were monitored from SCN explants collected from neonatal mice. The data demonstrate that SCN explants from neonatal CK1δ-deficient mice oscillate, but with a longer circadian period than littermate controls. The cycle length of rhythms recorded from neonatal SCN explants of CK1ε-deficient mice did not differ from control explants. Conclusions/Significance: The results indicate that CK1δ plays a more prominent role than CK1ε in the maintenance of 24-hour rhythms in the master circadian oscillator.

Suggested Citation

  • Jean-Pierre Etchegaray & Elizabeth A Yu & Premananda Indic & Robert Dallmann & David R Weaver, 2010. "Casein Kinase 1 Delta (CK1δ) Regulates Period Length of the Mouse Suprachiasmatic Circadian Clock In Vitro," PLOS ONE, Public Library of Science, vol. 5(4), pages 1-6, April.
  • Handle: RePEc:plo:pone00:0010303
    DOI: 10.1371/journal.pone.0010303
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0010303
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0010303&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0010303?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Steven M. Reppert & David R. Weaver, 2002. "Coordination of circadian timing in mammals," Nature, Nature, vol. 418(6901), pages 935-941, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Riganello & Valeria Prada & Andres Soddu & Carol di Perri & Walter G. Sannita, 2019. "Circadian Rhythms and Measures of CNS/Autonomic Interaction," IJERPH, MDPI, vol. 16(13), pages 1-11, July.
    2. Purificación Gómez-Abellán & Antoni Díez-Noguera & Juan A Madrid & Juan A Luján & José M Ordovás & Marta Garaulet, 2012. "Glucocorticoids Affect 24 h Clock Genes Expression in Human Adipose Tissue Explant Cultures," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-10, December.
    3. Nguyen, Ha Trong & Zubrick, Stephen R. & Mitrou, Francis, 2024. "The effects of sleep duration on child health and development," Journal of Economic Behavior & Organization, Elsevier, vol. 221(C), pages 35-51.
    4. Qiang Bao & Di Liu & Yujiao Guo & Wang Gu & Zhengfeng Cao & Yu Zhang & Yang Zhang & Qi Xu & Guohong Chen, 2023. "Melatonin Secretion in Regulating the Circadian Rhythms of Reproduction in Goose ( Anser cygnoides )," Agriculture, MDPI, vol. 13(8), pages 1-16, August.
    5. Francisco J Sánchez Muniz & Cristina Simón Martín, 2017. "Clock Genes, Chronodisruption, Nutrition and Obesity," Current Research in Diabetes & Obesity Journal, Juniper Publishers Inc., vol. 3(2), pages 1-62:3, July.
    6. Henson, Michael A., 2013. "Multicellular models of intercellular synchronization in circadian neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 48-64.
    7. Andrew E. Warfield & Pooja Gupta & Madison M. Ruhmann & Quiana L. Jeffs & Genevieve C. Guidone & Hannah W. Rhymes & McKenzi I. Thompson & William D. Todd, 2023. "A brainstem to circadian system circuit links Tau pathology to sundowning-related disturbances in an Alzheimer’s disease mouse model," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Cheng-Kang Chiang & Neel Mehta & Abhilasha Patel & Peng Zhang & Zhibin Ning & Janice Mayne & Warren Y L Sun & Hai-Ying M Cheng & Daniel Figeys, 2014. "The Proteomic Landscape of the Suprachiasmatic Nucleus Clock Reveals Large-Scale Coordination of Key Biological Processes," PLOS Genetics, Public Library of Science, vol. 10(10), pages 1-15, October.
    9. Li, Ying & Liu, Zengrong, 2015. "Dynamical mechanism of Bmal1/Rev-erbα loop in circadian clock," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 126-135.
    10. Sumedha W Karmarkar & Kathleen M Bottum & Stacey L Krager & Shelley A Tischkau, 2011. "ERK/MAPK Is Essential for Endogenous Neuroprotection in SCN2.2 Cells," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-13, August.
    11. Valerie L Harbour & Yuval Weigl & Barry Robinson & Shimon Amir, 2013. "Comprehensive Mapping of Regional Expression of the Clock Protein PERIOD2 in Rat Forebrain across the 24-h Day," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-14, October.
    12. O. Slaby & S. Sager & O. S. Shaik & U. Kummer & D. Lebiedz, 2007. "Optimal control of self-organized dynamics in cellular signal transduction," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 13(5), pages 487-502, October.
    13. Michal Dudek & Dharshika R. J. Pathiranage & Beatriz Bano-Otalora & Anna Paszek & Natalie Rogers & Cátia F. Gonçalves & Craig Lawless & Dong Wang & Zhuojing Luo & Liu Yang & Farshid Guilak & Judith A., 2023. "Mechanical loading and hyperosmolarity as a daily resetting cue for skeletal circadian clocks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. René Carmona & Christy V. Graves, 2020. "Jet Lag Recovery: Synchronization of Circadian Oscillators as a Mean Field Game," Dynamic Games and Applications, Springer, vol. 10(1), pages 79-99, March.
    15. David H. Sarrazin & Wilf Gardner & Carole Marchese & Martin Balzinger & Chockalingam Ramanathan & Marion Schott & Stanislav Rozov & Maxime Veleanu & Stefan Vestring & Claus Normann & Tomi Rantamäki & , 2024. "Prefrontal cortex molecular clock modulates development of depression-like phenotype and rapid antidepressant response in mice," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Jing Wang & Haibo Di & Steven Laureys & Nantu Hu, 2018. "Circadian Rhythm of Patients with Disorders of Consciousness," Open Access Journal of Neurology & Neurosurgery, Juniper Publishers Inc., vol. 9(3), pages 60-61, November.
    17. Yan-Ying Wang & Wei-Wei Ma & I-Feng Peng, 2020. "Screening of sleep assisting drug candidates with a Drosophila model," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-17, July.
    18. Hyeri Nam & Younghwan Lee & Boil Kim & Ji-Won Lee & Seohyeon Hwang & Hyun-Kyu An & Kyung Min Chung & Youngjin Park & Jihyun Hong & Kyungjin Kim & Eun-Kyoung Kim & Han Kyoung Choe & Seong-Woon Yu, 2022. "Presenilin 2 N141I mutation induces hyperactive immune response through the epigenetic repression of REV-ERBα," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    19. Li, Ying & Liu, Zengrong, 2016. "Coupling mechanism in the gate and oscillator model of the SCN," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 62-72.
    20. Valerie L Harbour & Yuval Weigl & Barry Robinson & Shimon Amir, 2014. "Phase Differences in Expression of Circadian Clock Genes in the Central Nucleus of the Amygdala, Dentate Gyrus, and Suprachiasmatic Nucleus in the Rat," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-9, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0010303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.