IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0008483.html
   My bibliography  Save this article

Cognitive and Motivational Requirements for the Emergence of Cooperation in a Rat Social Game

Author

Listed:
  • Duarte S Viana
  • Isabel Gordo
  • Élio Sucena
  • Marta A P Moita

Abstract

Background: Game theory and the Prisoner's Dilemma (PD) game in particular, which captures the paradox of cooperative interactions that lead to benefits but entail costs to the interacting individuals, have constituted a powerful tool in the study of the mechanisms of reciprocity. However, in non-human animals most tests of reciprocity in PD games have resulted in sustained defection strategies. As a consequence, it has been suggested that under such stringent conditions as the PD game humans alone have evolved the necessary cognitive abilities to engage in reciprocity, namely, numerical discrimination, memory and control of temporal discounting. Methodology/Principal Findings: We use an iterated PD game to test rats (Rattus norvegicus) for the presence of such cognitive abilities by manipulating the strategy of the opponent, Tit-for-Tat and Pseudo-Random, or the relative size of the temptation to defect. We found that rats shape their behaviour according to the opponent's strategy and the relative outcome resulting from cooperative or defective moves. Finally, we show that the behaviour of rats is contingent upon their motivational state (hungry versus sated). Conclusions/Significance: Here we show that rats understand the payoff matrix of the PD game and the strategy of the opponent. Importantly, our findings reveal that rats possess the necessary cognitive capacities for reciprocity-based cooperation to emerge in the context of a prisoner's dilemma. Finally, the validation of the rat as a model to study reciprocity-based cooperation during the PD game opens new avenues of research in experimental neuroscience.

Suggested Citation

  • Duarte S Viana & Isabel Gordo & Élio Sucena & Marta A P Moita, 2010. "Cognitive and Motivational Requirements for the Emergence of Cooperation in a Rat Social Game," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-9, January.
  • Handle: RePEc:plo:pone00:0008483
    DOI: 10.1371/journal.pone.0008483
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0008483
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0008483&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0008483?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Norbert J. Fortin & Sean P. Wright & Howard Eichenbaum, 2004. "Recollection-like memory retrieval in rats is dependent on the hippocampus," Nature, Nature, vol. 431(7005), pages 188-191, September.
    2. Adam Kepecs & Naoshige Uchida & Hatim A. Zariwala & Zachary F. Mainen, 2008. "Neural correlates, computation and behavioural impact of decision confidence," Nature, Nature, vol. 455(7210), pages 227-231, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Micha Heilbron & Florent Meyniel, 2019. "Confidence resets reveal hierarchical adaptive learning in humans," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-24, April.
    2. Leopold Zizlsperger & Thomas Sauvigny & Thomas Haarmeier, 2012. "Selective Attention Increases Choice Certainty in Human Decision Making," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    3. Manuel Rausch & Michael Zehetleitner, 2019. "The folded X-pattern is not necessarily a statistical signature of decision confidence," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-18, October.
    4. Laurence Aitchison & Dan Bang & Bahador Bahrami & Peter E Latham, 2015. "Doubly Bayesian Analysis of Confidence in Perceptual Decision-Making," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-23, October.
    5. Ronald H Stevens & Trysha L Galloway, 2022. "Can machine learning be used to forecast the future uncertainty of military teams?," The Journal of Defense Modeling and Simulation, , vol. 19(2), pages 145-158, April.
    6. Wan-Yu Shih & Hsiang-Yu Yu & Cheng-Chia Lee & Chien-Chen Chou & Chien Chen & Paul W. Glimcher & Shih-Wei Wu, 2023. "Electrophysiological population dynamics reveal context dependencies during decision making in human frontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    7. Andrea Insabato & Mario Pannunzi & Gustavo Deco, 2017. "Multiple Choice Neurodynamical Model of the Uncertain Option Task," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-29, January.
    8. Florent Meyniel, 2020. "Brain dynamics for confidence-weighted learning," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-27, June.
    9. Johannes Rüter & Henning Sprekeler & Wulfram Gerstner & Michael H Herzog, 2013. "The Silent Period of Evidence Integration in Fast Decision Making," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-7, January.
    10. Mariam Aly & Andrew P Yonelinas, 2012. "Bridging Consciousness and Cognition in Memory and Perception: Evidence for Both State and Strength Processes," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-16, January.
    11. Marina Martinez-Garcia & Andrea Insabato & Mario Pannunzi & Jose L Pardo-Vazquez & Carlos Acuña & Gustavo Deco, 2015. "The Encoding of Decision Difficulty and Movement Time in the Primate Premotor Cortex," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-25, November.
    12. Eleanor Holton & Jan Grohn & Harry Ward & Sanjay G. Manohar & Jill X. O’Reilly & Nils Kolling, 2024. "Goal commitment is supported by vmPFC through selective attention," Nature Human Behaviour, Nature, vol. 8(7), pages 1351-1365, July.
    13. David Aguilar-Lleyda & Maxime Lemarchand & Vincent de Gardelle, 2020. "Confidence as a Priority Signal," Post-Print hal-02958760, HAL.
    14. Mikhail Ordin & Dina Abdel Salam El-Dakhs & Ming Tao & Fengfeng Chu & Leona Polyanskaya, 2024. "Cultural influence on metacognition: comparison across three societies," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
    15. Benjamin M. Basile & Vincent D. Costa & Jamie L. Schafroth & Chloe L. Karaskiewicz & Daniel R. Lucas & Elisabeth A. Murray, 2023. "The amygdala is not necessary for the familiarity aspect of recognition memory," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Charlotte Caucheteux & Alexandre Gramfort & Jean-Rémi King, 2023. "Evidence of a predictive coding hierarchy in the human brain listening to speech," Nature Human Behaviour, Nature, vol. 7(3), pages 430-441, March.
    17. Sebastian Bitzer & Jelle Bruineberg & Stefan J Kiebel, 2015. "A Bayesian Attractor Model for Perceptual Decision Making," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-35, August.
    18. Florent Meyniel & Daniel Schlunegger & Stanislas Dehaene, 2015. "The Sense of Confidence during Probabilistic Learning: A Normative Account," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-25, June.
    19. William T Adler & Wei Ji Ma, 2018. "Comparing Bayesian and non-Bayesian accounts of human confidence reports," PLOS Computational Biology, Public Library of Science, vol. 14(11), pages 1-34, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0008483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.