IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0008470.html
   My bibliography  Save this article

Steered Molecular Dynamics Simulations Reveal the Likelier Dissociation Pathway of Imatinib from Its Targeting Kinases c-Kit and Abl

Author

Listed:
  • Li-Jun Yang
  • Jun Zou
  • Huan-Zhang Xie
  • Lin-Li Li
  • Yu-Quan Wei
  • Sheng-Yong Yang

Abstract

Development of small molecular kinase inhibitors has recently been the central focus in drug discovery. And type II kinase inhibitors that target inactive conformation of kinases have attracted particular attention since their potency and selectivity are thought to be easier to achieve compared with their counterpart type I inhibitors that target active conformation of kinases. Although mechanisms underlying the interactions between type II inhibitors and their targeting kinases have been widely studied, there are still some challenging problems, for example, how type II inhibitors associate with or dissociate from their targeting kinases. In this investigation, steered molecular dynamics simulations have been carried out to explore the possible dissociation pathways of typical type II inhibitor imatinib from its targeting protein kinases c-Kit and Abl. The simulation results indicate that the most favorable pathway for imatinib dissociation corresponds to the ATP-channel rather than the relatively wider allosteric-pocket-channel, which is mainly due to the different van der Waals interaction that the ligand suffers during dissociation. Nevertheless, the direct reason comes from the fact that the residues composing the ATP-channel are more flexible than that forming the allosteric-pocket-channel. The present investigation suggests that a bulky hydrophobic head is unfavorable, but a large polar tail is allowed for a potent type II inhibitor. The information obtained here can be used to direct the discovery of type II kinase inhibitors.

Suggested Citation

  • Li-Jun Yang & Jun Zou & Huan-Zhang Xie & Lin-Li Li & Yu-Quan Wei & Sheng-Yong Yang, 2009. "Steered Molecular Dynamics Simulations Reveal the Likelier Dissociation Pathway of Imatinib from Its Targeting Kinases c-Kit and Abl," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-8, December.
  • Handle: RePEc:plo:pone00:0008470
    DOI: 10.1371/journal.pone.0008470
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0008470
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0008470&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0008470?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charles Sawyers, 2004. "Targeted cancer therapy," Nature, Nature, vol. 432(7015), pages 294-297, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan Han & Ying Yuan & Sha Cao & Muyi Li & Yong Zang, 2020. "On the Use of Marker Strategy Design to Detect Predictive Marker Effect in Cancer Immunotherapy and Targeted Therapy," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(2), pages 180-195, July.
    2. Han Koo & Kyung Chan Park & Hyun Ahm Sohn & Minho Kang & Dong Joon Kim & Zee-Yong Park & Sehoon Park & Sang Hyun Min & Seong-Hwan Park & Yeon-Mi You & Yohan Han & Bo-Kyung Kim & Chul-Ho Lee & Yeon-Soo, 2025. "Anti-proteolytic regulation of KRAS by USP9X/NDRG3 in KRAS-driven cancer development," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    3. Yi Fu & Robert Kunz & Jianhua Wu & Cheng Dong, 2012. "Study of Local Hydrodynamic Environment in Cell-Substrate Adhesion Using Side-View μPIV Technology," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-13, February.
    4. Noriyuki Uchida & Ai Kohata & Kou Okuro & Annalisa Cardellini & Chiara Lionello & Eric A. Zizzi & Marco A. Deriu & Giovanni M. Pavan & Michio Tomishige & Takaaki Hikima & Takuzo Aida, 2022. "Reconstitution of microtubule into GTP-responsive nanocapsules," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Wei-Xiang Qi & Yu-Jing Huang & Yang Yao & Zan Shen & Da-Liu Min, 2013. "Incidence and Risk of Treatment-Related Mortality with mTOR Inhibitors Everolimus and Temsirolimus in Cancer Patients: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-8, June.
    6. Jacob D Feala & Jorge Cortes & Phillip M Duxbury & Andrew D McCulloch & Carlo Piermarocchi & Giovanni Paternostro, 2012. "Statistical Properties and Robustness of Biological Controller-Target Networks," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-11, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0008470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.