IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0007423.html
   My bibliography  Save this article

Species-Specific Traits Rather Than Resource Partitioning Mediate Diversity Effects on Resource Use

Author

Listed:
  • Jasmin A Godbold
  • Rutger Rosenberg
  • Martin Solan

Abstract

Background: The link between biodiversity and ecosystem processes has firmly been established, but the mechanisms underpinning this relationship are poorly documented. Most studies have focused on terrestrial plant systems where resource use can be difficult to quantify as species rely on a limited number of common resources. Investigating resource use at the bulk level may not always be of sufficient resolution to detect subtle differences in resource use, as species-specific nutritional niches at the biochemical level may also moderate diversity effects on resource use. Methodology/Principal Findings: Here we use three co-occurring marine benthic echinoderms (Brissopsis lyrifera, Mesothuria intestinalis, Parastichopus tremulus) that feed on the same phytodetrital food source, to determine whether resource partitioning is the principal mechanism underpinning diversity effects on resource use. Specifically we investigate the use of phytodetrital pigments (chlorophylls and carotenoids) because many of these are essential for biological functions, including reproduction. Pigments were identified and quantified using reverse-phase high performance liquid Chromatography (HPLC) and data were analysed using a combination of extended linear regression with generalised least squares (GLS) estimation and standard multivariate techniques. Our analyses reveal no species-specific selectivity for particular algal pigments, confirming that these three species do not partition food resources at the biochemical level. Nevertheless, we demonstrate increased total resource use in diverse treatments as a result of selection effects and the dominance of one species (B. lyrifera). Conclusion: Overall, we found no evidence for resource partitioning at the biochemical level, as pigment composition was similar between individuals, which is likely due to plentiful food availability. Reduced intra-specific competition in the species mixture combined with greater adsorption efficiency and differences in feeding behaviour likely explain the dominant use of resources by B. lyrifera.

Suggested Citation

  • Jasmin A Godbold & Rutger Rosenberg & Martin Solan, 2009. "Species-Specific Traits Rather Than Resource Partitioning Mediate Diversity Effects on Resource Use," PLOS ONE, Public Library of Science, vol. 4(10), pages 1-9, October.
  • Handle: RePEc:plo:pone00:0007423
    DOI: 10.1371/journal.pone.0007423
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0007423
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0007423&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0007423?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michel Loreau & Andy Hector, 2001. "Partitioning selection and complementarity in biodiversity experiments," Nature, Nature, vol. 412(6842), pages 72-76, July.
    2. Bradley J. Cardinale & Diane S. Srivastava & J. Emmett Duffy & Justin P. Wright & Amy L. Downing & Mahesh Sankaran & Claire Jouseau, 2006. "Effects of biodiversity on the functioning of trophic groups and ecosystems," Nature, Nature, vol. 443(7114), pages 989-992, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David S Clare & Matthew Spencer & Leonie A Robinson & Christopher L J Frid, 2016. "Species-Specific Effects on Ecosystem Functioning Can Be Altered by Interspecific Interactions," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luiz A. Domeignoz-Horta & Seraina L. Cappelli & Rashmi Shrestha & Stephanie Gerin & Annalea K. Lohila & Jussi Heinonsalo & Daniel B. Nelson & Ansgar Kahmen & Pengpeng Duan & David Sebag & Eric Verrecc, 2024. "Plant diversity drives positive microbial associations in the rhizosphere enhancing carbon use efficiency in agricultural soils," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Amanda J Ashworth & Heather D Toler & Fred L Allen & Robert M Augé, 2018. "Global meta-analysis reveals agro-grassland productivity varies based on species diversity over time," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-19, July.
    3. Hannes Peter & Irene Ylla & Cristian Gudasz & Anna M Romaní & Sergi Sabater & Lars J Tranvik, 2011. "Multifunctionality and Diversity in Bacterial Biofilms," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-8, August.
    4. Tesfaye, Wondimagegn & Tirivayi, Nyasha, 2020. "Crop diversity, household welfare and consumption smoothing under risk: Evidence from rural Uganda," World Development, Elsevier, vol. 125(C).
    5. Asrat, Sinafikeh & Yesuf, Mahmud & Carlsson, Fredrik & Wale, Edilegnaw, 2009. "Farmers’ Preferences for Crop Variety Traits: Lessons for On-Farm Conservation and Technology Adoption," RFF Working Paper Series dp-09-15-efd, Resources for the Future.
    6. Pachepsky, Elizaveta & Bown, James L. & Eberst, Alistair & Bausenwein, Ursula & Millard, Peter & Squire, Geoff R. & Crawford, John W., 2007. "Consequences of intraspecific variation for the structure and function of ecological communities Part 2: Linking diversity and function," Ecological Modelling, Elsevier, vol. 207(2), pages 277-285.
    7. Lei Wang & Xiaobo Huang & Jianrong Su, 2022. "Tree Species Diversity and Stand Attributes Differently Influence the Ecosystem Functions of Pinus yunnanensis Secondary Forests under the Climate Context," Sustainability, MDPI, vol. 14(14), pages 1-12, July.
    8. Sarah R. Weiskopf & Forest Isbell & Maria Isabel Arce-Plata & Moreno Di Marco & Mike Harfoot & Justin Johnson & Susannah B. Lerman & Brian W. Miller & Toni Lyn Morelli & Akira S. Mori & Ensheng Weng &, 2024. "Biodiversity loss reduces global terrestrial carbon storage," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Di Falco, Salvatore & Bezabih, Mintewab & Yesuf, Mahmud, 2010. "Seeds for livelihood: Crop biodiversity and food production in Ethiopia," Ecological Economics, Elsevier, vol. 69(8), pages 1695-1702, June.
    10. Garba, Ismail I. & Bell, Lindsay W. & Chauhan, Bhagirath S. & Williams, Alwyn, 2024. "Optimizing ecosystem function multifunctionality with cover crops for improved agronomic and environmental outcomes in dryland cropping systems," Agricultural Systems, Elsevier, vol. 214(C).
    11. Martínez-Jauregui, María & White, Piran C.L. & Touza, Julia & Soliño, Mario, 2019. "Untangling perceptions around indicators for biodiversity conservation and ecosystem services," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.
    12. Marino, Davide & Gaglioppa, Pierluca & Schirpke, Uta & Guadagno, Rossella & Marucci, Angelo & Palmieri, Margherita & Pellegrino, Davide & Gusmerotti, Natalia, 2014. "Assessment and governance of Ecosystem Services for improving management effectiveness of Natura 2000 sites," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 3(3), pages 1-19, December.
    13. Meinard, Yves & Grill, Philippe, 2011. "The economic valuation of biodiversity as an abstract good," Ecological Economics, Elsevier, vol. 70(10), pages 1707-1714, August.
    14. Gabriela Woźniak & Monika Malicka & Jacek Kasztowski & Łukasz Radosz & Joanna Czarnecka & Jaco Vangronsveld & Dariusz Prostański, 2022. "How Important Are the Relations between Vegetation Diversity and Bacterial Functional Diversity for the Functioning of Novel Ecosystems?," Sustainability, MDPI, vol. 15(1), pages 1-16, December.
    15. Chun-Wei Chang & Takeshi Miki & Hao Ye & Sami Souissi & Rita Adrian & Orlane Anneville & Helen Agasild & Syuhei Ban & Yaron Be’eri-Shlevin & Yin-Ru Chiang & Heidrun Feuchtmayr & Gideon Gal & Satoshi I, 2022. "Causal networks of phytoplankton diversity and biomass are modulated by environmental context," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Guangzhou Wang & Haley M. Burrill & Laura Y. Podzikowski & Maarten B. Eppinga & Fusuo Zhang & Junling Zhang & Peggy A. Schultz & James D. Bever, 2023. "Dilution of specialist pathogens drives productivity benefits from diversity in plant mixtures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Kangwei Jiang & Qingqing Zhang & Yafei Wang & Hong Li & Yongqiang Yang & Tursunnay Reyimu, 2023. "The Combination of Plant Diversity and Soil Microbial Diversity Directly and Actively Drives the Multifunctionality of Grassland Ecosystems in the Middle Part of the Northern Slopes of the Tian Shan u," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    18. Chang, Feng-Hsun & Ke, Po-Ju & Cardinale, Bradley, 2020. "Weak intra-guild predation facilitates consumer coexistence but does not guarantee higher consumer density," Ecological Modelling, Elsevier, vol. 424(C).
    19. Kwikiriza, Norman & Katungi, Enid & Horna, Daniela, 2011. "Estimating the role of spatial varietal diversity on crop productivity within an abatement framework: The case of banana in Uganda," IFPRI discussion papers 01051, International Food Policy Research Institute (IFPRI).
    20. Cecilia Bellora & Élodie Blanc & Jean-Marc Bourgeon & Eric Strobl, 2018. "Estimating the Impact of Crop Diversity on Agricultural Productivity in South Africa," NBER Chapters, in: Agricultural Productivity and Producer Behavior, pages 185-215, National Bureau of Economic Research, Inc.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0007423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.