IDEAS home Printed from https://ideas.repec.org/a/plo/pntd00/0007903.html
   My bibliography  Save this article

The impact of vector migration on the effectiveness of strategies to control gambiense human African trypanosomiasis

Author

Listed:
  • Martial L Ndeffo-Mbah
  • Abhishek Pandey
  • Katherine E Atkins
  • Serap Aksoy
  • Alison P Galvani

Abstract

Background: Several modeling studies have been undertaken to assess the feasibility of the WHO goal of eliminating gambiense human African trypanosomiasis (g-HAT) by 2030. However, these studies have generally overlooked the effect of vector migration on disease transmission and control. Here, we evaluated the impact of vector migration on the feasibility of interrupting transmission in different g-HAT foci. Methods: We developed a g-HAT transmission model of a single tsetse population cluster that accounts for migration of tsetse fly into this population. We used a model calibration approach to constrain g-HAT incidence to ranges expected for high, moderate and low transmission settings, respectively. We used the model to evaluate the effectiveness of current intervention measures, including medical intervention through enhanced screening and treatment, and vector control, for interrupting g-HAT transmission in disease foci under each transmission setting. Results: We showed that, in low transmission settings, under enhanced medical intervention alone, at least 70% treatment coverage is needed to interrupt g-HAT transmission within 10 years. In moderate transmission settings, a combination of medical intervention and a vector control measure with a daily tsetse mortality greater than 0.03 is required to achieve interruption of disease transmission within 10 years. In high transmission settings, interruption of disease transmission within 10 years requires a combination of at least 70% medical intervention coverage and at least 0.05 tsetse daily mortality rate from vector control. However, the probability of achieving elimination in high transmission settings decreases with an increased tsetse migration rate. Conclusion: Our results suggest that the WHO 2030 goal of G-HAT elimination is, at least in theory, achievable. But the presence of tsetse migration may reduce the probability of interrupting g-HAT transmission in moderate and high transmission foci. Therefore, optimal vector control programs should incorporate monitoring and controlling of vector density in buffer areas around foci of g-HAT control efforts. Author summary: Gambian human African trypanosomiasis (g-HAT), also known as sleeping sickness, is a vector-borne parasitic disease transmitted by tsetse flies. If untreated, g-HAT infection will usually result in death. Recently, the World Health Organization (WHO) has targeted g-HAT for elimination through achieving interruption of transmission by 2030. To help inform elimination efforts, mathematical models have been used to evaluate the feasibility of the WHO goals in different g-HAT transmission foci. However, these mathematical models have generally ignored the role that tsetse migration may have in the spread and reemergence of g-HAT. Using a mathematical model, we evaluate the impact of tsetse migration on the effectiveness of current intervention measures for achieving interruption of g-HAT transmission in different transmission foci. We consider different interventions such as enhanced screening and treatment and vector control. We show that vector control has a great potential for reducing transmission. Still, the presence and intensity of tsetse migration can undermine its effectiveness for interrupting disease transmission, especially in high transmission foci. Our results indicate the need of accounting for tsetse surveillance and migration data in designing vector control efforts for g-HAT elimination.

Suggested Citation

  • Martial L Ndeffo-Mbah & Abhishek Pandey & Katherine E Atkins & Serap Aksoy & Alison P Galvani, 2019. "The impact of vector migration on the effectiveness of strategies to control gambiense human African trypanosomiasis," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 13(12), pages 1-15, December.
  • Handle: RePEc:plo:pntd00:0007903
    DOI: 10.1371/journal.pntd.0007903
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0007903
    Download Restriction: no

    File URL: https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0007903&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pntd.0007903?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kloek, Tuen & van Dijk, Herman K, 1978. "Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo," Econometrica, Econometric Society, vol. 46(1), pages 1-19, January.
    2. Jenny M Lindh & Steve J Torr & Glyn A Vale & Mike J Lehane, 2009. "Improving the Cost-Effectiveness of Artificial Visual Baits for Controlling the Tsetse Fly Glossina fuscipes fuscipes," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 3(7), pages 1-7, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Palm, F.C. & Sneek, J.M., 1981. "Some econometric applications of the exact distribution of the ratio of two quadratic forms in normal variates," Serie Research Memoranda 0018, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    2. James A. Chalfant & Richard S. Gray & Kenneth J. White, 1991. "Evaluating Prior Beliefs in a Demand System: The Case of Meat Demand in Canada," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 73(2), pages 476-490.
    3. Hajargasht, Gholamreza & Rao, D.S. Prasada, 2019. "Multilateral index number systems for international price comparisons: Properties, existence and uniqueness," Journal of Mathematical Economics, Elsevier, vol. 83(C), pages 36-47.
    4. Cranfield, John A.L. & Preckel, Paul V. & Liu, Songquan, 1997. "Approximating Bayesian Posteriors using Multivariate Gaussian Quadrature," 1997 Annual Meeting, July 13-16, 1997, Reno\ Sparks, Nevada 35791, Western Agricultural Economics Association.
    5. Ardia, David & Hoogerheide, Lennart F., 2010. "Efficient Bayesian estimation and combination of GARCH-type models," MPRA Paper 22919, University Library of Munich, Germany.
    6. Koopman, Siem Jan & Lucas, André, 2008. "A Non-Gaussian Panel Time Series Model for Estimating and Decomposing Default Risk," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 510-525.
    7. Roger D Santer & Michael N Okal & Johan Esterhuizen & Steve J Torr, 2021. "Evaluation of improved coloured targets to control riverine tsetse in East Africa: A Bayesian approach," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 15(6), pages 1-22, June.
    8. Shigeru Iwata & Evan Tanner, 2007. "Pick Your Poison: The Exchange Rate Regime and Capital Account Volatility in Emerging Markets," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 57(7-8), pages 363-381, September.
    9. Babula, Ronald A. & Bessler, David A. & Schluter, Gerald E., 1990. "Poultry-Related Price Transmissions and Structural Change Since the 1950's," Journal of Agricultural Economics Research, United States Department of Agriculture, Economic Research Service, vol. 42(02), pages 1-9.
    10. Unknown, 2006. "Journal of International Agricultural Trade and Development, Volume 2, Number 2, Fall 2006," Journal of International Agricultural Trade and Development, Journal of International Agricultural Trade and Development, vol. 2(2).
    11. Steel, Mark F. J., 1991. "A Bayesian analysis of simultaneous equation models by combining recursive analytical and numerical approaches," Journal of Econometrics, Elsevier, vol. 48(1-2), pages 83-117.
    12. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    13. Enders, Walter & Lee, Bong-Soo, 1997. "Accounting for real and nominal exchange rate movements in the post-Bretton Woods period," Journal of International Money and Finance, Elsevier, vol. 16(2), pages 233-254, April.
    14. VAN DIJK, Herman K., 1987. "Some advances in Bayesian estimations methods using Monte Carlo Integration," LIDAM Reprints CORE 783, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    15. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    16. Hajivassiliou, Vassilis A. & Ruud, Paul A., 1986. "Classical estimation methods for LDV models using simulation," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 40, pages 2383-2441, Elsevier.
    17. Baştürk, Nalan & Grassi, Stefano & Hoogerheide, Lennart & Opschoor, Anne & van Dijk, Herman K., 2017. "The R Package MitISEM: Efficient and Robust Simulation Procedures for Bayesian Inference," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i01).
    18. Feliz, Raúl Aníbal & Vargas, Laura, 1994. "Una prueba econométrica del enfoque moderno de la cuenta corriente en México," Estudios Económicos, El Colegio de México, Centro de Estudios Económicos, vol. 9(2), pages 189-207.
    19. Hoogerheide, Lennart & Kleibergen, Frank & van Dijk, Herman K., 2007. "Natural conjugate priors for the instrumental variables regression model applied to the Angrist-Krueger data," Journal of Econometrics, Elsevier, vol. 138(1), pages 63-103, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0007903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.