IDEAS home Printed from https://ideas.repec.org/a/plo/pntd00/0004473.html
   My bibliography  Save this article

Developing a Time Series Predictive Model for Dengue in Zhongshan, China Based on Weather and Guangzhou Dengue Surveillance Data

Author

Listed:
  • Yingtao Zhang
  • Tao Wang
  • Kangkang Liu
  • Yao Xia
  • Yi Lu
  • Qinlong Jing
  • Zhicong Yang
  • Wenbiao Hu
  • Jiahai Lu

Abstract

Background: Dengue is a re-emerging infectious disease of humans, rapidly growing from endemic areas to dengue-free regions due to favorable conditions. In recent decades, Guangzhou has again suffered from several big outbreaks of dengue; as have its neighboring cities. This study aims to examine the impact of dengue epidemics in Guangzhou, China, and to develop a predictive model for Zhongshan based on local weather conditions and Guangzhou dengue surveillance information. Methods: We obtained weekly dengue case data from 1st January, 2005 to 31st December, 2014 for Guangzhou and Zhongshan city from the Chinese National Disease Surveillance Reporting System. Meteorological data was collected from the Zhongshan Weather Bureau and demographic data was collected from the Zhongshan Statistical Bureau. A negative binomial regression model with a log link function was used to analyze the relationship between weekly dengue cases in Guangzhou and Zhongshan, controlling for meteorological factors. Cross-correlation functions were applied to identify the time lags of the effect of each weather factor on weekly dengue cases. Models were validated using receiver operating characteristic (ROC) curves and k-fold cross-validation. Results: Our results showed that weekly dengue cases in Zhongshan were significantly associated with dengue cases in Guangzhou after the treatment of a 5 weeks prior moving average (Relative Risk (RR) = 2.016, 95% Confidence Interval (CI): 1.845–2.203), controlling for weather factors including minimum temperature, relative humidity, and rainfall. ROC curve analysis indicated our forecasting model performed well at different prediction thresholds, with 0.969 area under the receiver operating characteristic curve (AUC) for a threshold of 3 cases per week, 0.957 AUC for a threshold of 2 cases per week, and 0.938 AUC for a threshold of 1 case per week. Models established during k-fold cross-validation also had considerable AUC (average 0.938–0.967). The sensitivity and specificity obtained from k-fold cross-validation was 78.83% and 92.48% respectively, with a forecasting threshold of 3 cases per week; 91.17% and 91.39%, with a threshold of 2 cases; and 85.16% and 87.25% with a threshold of 1 case. The out-of-sample prediction for the epidemics in 2014 also showed satisfactory performance. Conclusion: Our study findings suggest that the occurrence of dengue outbreaks in Guangzhou could impact dengue outbreaks in Zhongshan under suitable weather conditions. Future studies should focus on developing integrated early warning systems for dengue transmission including local weather and human movement. Author Summary: Emerging and re-emerging infectious diseases in an urban city could expand due to increased urbanization, population density, and travel. Dengue, as a mosquito-borne viral disease, has rapidly spread from endemic areas to dengue-free regions, with social, demographic, entomological, and environmental factors affecting its transmission. In recent decades, Guangzhou has again suffered from several big outbreaks of dengue; as have its neighboring cities. In this study, we demonstrated that the dengue outbreaks in Guangzhou could impact outbreaks in Zhongshan, one of its neighboring cities, if suitable climate conditions are present. Such associations between dengue epidemics in two cities may also suggest the important role human movement has played in the transmission of the disease. Based on the association between dengue epidemics in Guangzhou and Zhongshan, and the association between dengue epidemics and weather conditions, we developed a reliable and robust model that predicts the occurrence of epidemics at diffrent thresholds in Zhongshan. These results could be used by local health departments in developing strategies towards dengue prevention and control, and push the public to pay more attention to social factors like human movement in disease transmission.

Suggested Citation

  • Yingtao Zhang & Tao Wang & Kangkang Liu & Yao Xia & Yi Lu & Qinlong Jing & Zhicong Yang & Wenbiao Hu & Jiahai Lu, 2016. "Developing a Time Series Predictive Model for Dengue in Zhongshan, China Based on Weather and Guangzhou Dengue Surveillance Data," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 10(2), pages 1-17, February.
  • Handle: RePEc:plo:pntd00:0004473
    DOI: 10.1371/journal.pntd.0004473
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0004473
    Download Restriction: no

    File URL: https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0004473&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pntd.0004473?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Samir Bhatt & Peter W. Gething & Oliver J. Brady & Jane P. Messina & Andrew W. Farlow & Catherine L. Moyes & John M. Drake & John S. Brownstein & Anne G. Hoen & Osman Sankoh & Monica F. Myers & Dylan , 2013. "The global distribution and burden of dengue," Nature, Nature, vol. 496(7446), pages 504-507, April.
    2. Jiang Xu & Anthony G.O. Yeh, 2005. "City Repositioning and Competitiveness Building in Regional Development: New Development Strategies in Guangzhou, China," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 29(2), pages 283-308, June.
    3. Shaowei Sang & Wenwu Yin & Peng Bi & Honglong Zhang & Chenggang Wang & Xiaobo Liu & Bin Chen & Weizhong Yang & Qiyong Liu, 2014. "Predicting Local Dengue Transmission in Guangzhou, China, through the Influence of Imported Cases, Mosquito Density and Climate Variability," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-10, July.
    4. Yoonsuh Jung & Jianhua Hu, 2015. "A K -fold averaging cross-validation procedure," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(2), pages 167-179, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jundi Liu & Xiaolu Tian & Yu Deng & Zhicheng Du & Tianzhu Liang & Yuantao Hao & Dingmei Zhang, 2019. "Risk Factors Associated with Dengue Virus Infection in Guangdong Province: A Community-Based Case-Control Study," IJERPH, MDPI, vol. 16(4), pages 1-12, February.
    2. Sijia Wu & Hongyan Ren & Wenhui Chen & Tiegang Li, 2019. "Neglected Urban Villages in Current Vector Surveillance System: Evidences in Guangzhou, China," IJERPH, MDPI, vol. 17(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongyan Ren & Lan Zheng & Qiaoxuan Li & Wu Yuan & Liang Lu, 2017. "Exploring Determinants of Spatial Variations in the Dengue Fever Epidemic Using Geographically Weighted Regression Model: A Case Study in the Joint Guangzhou-Foshan Area, China, 2014," IJERPH, MDPI, vol. 14(12), pages 1-13, December.
    2. Yujuan Yue & Qiyong Liu, 2019. "Exploring Epidemiological Characteristics of Domestic Imported Dengue Fever in Mainland China, 2014–2018," IJERPH, MDPI, vol. 16(20), pages 1-10, October.
    3. Yujuan Yue & Xiaobo Liu & Dongsheng Ren & Haixia Wu & Qiyong Liu, 2021. "Spatial Dynamics of Dengue Fever in Mainland China, 2019," IJERPH, MDPI, vol. 18(6), pages 1-12, March.
    4. Shaowei Sang & Shaohua Gu & Peng Bi & Weizhong Yang & Zhicong Yang & Lei Xu & Jun Yang & Xiaobo Liu & Tong Jiang & Haixia Wu & Cordia Chu & Qiyong Liu, 2015. "Predicting Unprecedented Dengue Outbreak Using Imported Cases and Climatic Factors in Guangzhou, 2014," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 9(5), pages 1-12, May.
    5. Fulong Wu, 2016. "China's Emergent City-Region Governance: A New Form of State Spatial Selectivity through State-orchestrated Rescaling," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 40(6), pages 1134-1151, November.
    6. Sakirul Khan & Sheikh Mohammad Fazle Akbar & Takaaki Yahiro & Mamun Al Mahtab & Kazunori Kimitsuki & Takehiro Hashimoto & Akira Nishizono, 2022. "Dengue Infections during COVID-19 Period: Reflection of Reality or Elusive Data Due to Effect of Pandemic," IJERPH, MDPI, vol. 19(17), pages 1-12, August.
    7. Raimbault, Juste & Le Néchet, Florent, 2021. "Introducing endogenous transport provision in a LUTI model to explore polycentric governance systems," Journal of Transport Geography, Elsevier, vol. 94(C).
    8. Shengzhang Dong & George Dimopoulos, 2023. "Aedes aegypti Argonaute 2 controls arbovirus infection and host mortality," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Cheong, Kang Hao, 2023. "A deep learning based hybrid architecture for weekly dengue incidences forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    10. Eunha Shim, 2017. "Cost-effectiveness of dengue vaccination in Yucatán, Mexico using a dynamic dengue transmission model," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-17, April.
    11. Dominik Kiemel & Ann-Sophie Helene Kroell & Solène Denolly & Uta Haselmann & Jean-François Bonfanti & Jose Ignacio Andres & Brahma Ghosh & Peggy Geluykens & Suzanne J. F. Kaptein & Lucas Wilken & Piet, 2024. "Pan-serotype dengue virus inhibitor JNJ-A07 targets NS4A-2K-NS4B interaction with NS2B/NS3 and blocks replication organelle formation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    12. Anna Lena Bercht & Rainer Wehrhahn, 2010. "A Psychological–Geographical Approach to Vulnerability: The Example of a Chinese urban Development Project from the Perspective of the Transactional Stress Model," Environment and Planning A, , vol. 42(7), pages 1705-1722, July.
    13. Fantechi, Federico & Fratesi, Ugo, 2024. "Spatial patterns of territorial competitiveness: The role of peripherality, urbanization and physical geography," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
    14. Hone-Jay Chu & Bo-Cheng Lin & Ming-Run Yu & Ta-Chien Chan, 2016. "Minimizing Spatial Variability of Healthcare Spatial Accessibility—The Case of a Dengue Fever Outbreak," IJERPH, MDPI, vol. 13(12), pages 1-11, December.
    15. O'Connor, Kevin & Fuellhart, Kurt, 2013. "Change in air services at second rank cities," Journal of Air Transport Management, Elsevier, vol. 28(C), pages 26-30.
    16. Cheng-Te Lin & Yu-Sheng Huang & Lu-Wen Liao & Chung-Te Ting, 2020. "Measuring Consumer Willingness to Pay to Reduce Health Risks of Contracting Dengue Fever," IJERPH, MDPI, vol. 17(5), pages 1-15, March.
    17. Amy R. Krystosik & Andrew Curtis & A. Desiree LaBeaud & Diana M. Dávalos & Robinson Pacheco & Paola Buritica & Álvaro A. Álvarez & Madhav P. Bhatta & Jorge Humberto Rojas Palacios & Mark A. James, 2018. "Neighborhood Violence Impacts Disease Control and Surveillance: Case Study of Cali, Colombia from 2014 to 2016," IJERPH, MDPI, vol. 15(10), pages 1-20, September.
    18. Laith Hussain-Alkhateeb & Tatiana Rivera Ramírez & Axel Kroeger & Ernesto Gozzer & Silvia Runge-Ranzinger, 2021. "Early warning systems (EWSs) for chikungunya, dengue, malaria, yellow fever, and Zika outbreaks: What is the evidence? A scoping review," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 15(9), pages 1-25, September.
    19. Qingyun Du & Yanxia Wang & Fu Ren & Zhiyuan Zhao & Hongqiang Liu & Chao Wu & Langjiao Li & Yiran Shen, 2014. "Measuring and Analysis of Urban Competitiveness of Chinese Provincial Capitals in 2010 under the Constraints of Major Function-Oriented Zoning Utilizing Spatial Analysis," Sustainability, MDPI, vol. 6(6), pages 1-26, May.
    20. Jiang, Dong & Wang, Qian & Ding, Fangyu & Fu, Jingying & Hao, Mengmeng, 2019. "Potential marginal land resources of cassava worldwide: A data-driven analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 167-173.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0004473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.