IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1009431.html
   My bibliography  Save this article

Genome-wide association study of fish oil supplementation on lipid traits in 81,246 individuals reveals new gene-diet interaction loci

Author

Listed:
  • Michael Francis
  • Changwei Li
  • Yitang Sun
  • Jingqi Zhou
  • Xiang Li
  • J Thomas Brenna
  • Kaixiong Ye

Abstract

Fish oil supplementation is widely used for reducing serum triglycerides (TAGs) but has mixed effects on other circulating cardiovascular biomarkers. Many genetic polymorphisms have been associated with blood lipids, including high- and low-density-lipoprotein cholesterol (HDL-C, LDL-C), total cholesterol, and TAGs. Here, the gene-diet interaction effects of fish oil supplementation on these lipids were analyzed in a discovery cohort of up to 73,962 UK Biobank participants, using a 1-degree-of-freedom (1df) test for interaction effects and a 2-degrees-of-freedom (2df) test to jointly analyze interaction and main effects. Associations with P G; minor allele frequency = 0.041), shows exclusively interaction effects. The minor allele is significantly associated with decreased TAGs in individuals with fish oil supplementation, but with increased TAGs in those without supplementation. This locus is significantly associated with higher GJB2 expression of connexin 26 in adipose tissue; connexin activity is known to change upon exposure to omega-3 fatty acids. Significant interaction effects were also found in three other loci in the genes SLC12A3 (HDL-C), ABCA6 (LDL-C), and MLXIPL (LDL-C), but highly significant main effects are also present. Our study identifies novel gene-diet interaction effects for four genetic loci, whose effects on blood lipids are modified by fish oil supplementation. These findings highlight the need and possibility for personalized nutrition.Author summary: We utilized the unprecedentedly large genotype and phenotype dataset in the UK Biobank to perform a genome-wide association study (GWAS) which accounts for the interplay between genotype and dietary intake. We examined the interaction effects of fish oil supplementation on levels of blood lipids (LDL-C, HDL-C, TAGs, and total cholesterol). Our findings were replicated in the Atherosclerosis Risk in Communities (ARIC) Study. We found that at the genetic variant rs112803755 (A>G), the minor allele (G) is associated with a decrease in TAGs among individuals with fish oil supplementation, but is associated with an increase in TAGs among those without supplementation. In other words, only individuals carrying the minor allele benefit from fish oil supplementation in reducing TAG levels. We further analyzed rs112803755 with functional genomics data from the Genotype-Tissue Expression (GTEx) project to identify potential target genes, and found a connexin coding gene which has been previously reported to respond to cellular omega-3 levels. This research suggests that inter-personal variation in TAG response to fish oil supplementation is in part explained by genotype, and that fish oil dose adjustment based on genotype should be investigated as a means to protect against cardiovascular disease risk.

Suggested Citation

  • Michael Francis & Changwei Li & Yitang Sun & Jingqi Zhou & Xiang Li & J Thomas Brenna & Kaixiong Ye, 2021. "Genome-wide association study of fish oil supplementation on lipid traits in 81,246 individuals reveals new gene-diet interaction loci," PLOS Genetics, Public Library of Science, vol. 17(3), pages 1-20, March.
  • Handle: RePEc:plo:pgen00:1009431
    DOI: 10.1371/journal.pgen.1009431
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1009431
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1009431&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1009431?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Clare Bycroft & Colin Freeman & Desislava Petkova & Gavin Band & Lloyd T. Elliott & Kevin Sharp & Allan Motyer & Damjan Vukcevic & Olivier Delaneau & Jared O’Connell & Adrian Cortes & Samantha Welsh &, 2018. "The UK Biobank resource with deep phenotyping and genomic data," Nature, Nature, vol. 562(7726), pages 203-209, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kenneth E. Westerman & Timothy D. Majarian & Franco Giulianini & Dong-Keun Jang & Jenkai Miao & Jose C. Florez & Han Chen & Daniel I. Chasman & Miriam S. Udler & Alisa K. Manning & Joanne B. Cole, 2022. "Variance-quantitative trait loci enable systematic discovery of gene-environment interactions for cardiometabolic serum biomarkers," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Di Scipio & Mohammad Khan & Shihong Mao & Michael Chong & Conor Judge & Nazia Pathan & Nicolas Perrot & Walter Nelson & Ricky Lali & Shuang Di & Robert Morton & Jeremy Petch & Guillaume Paré, 2023. "A versatile, fast and unbiased method for estimation of gene-by-environment interaction effects on biobank-scale datasets," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Jacob Joseph & Chang Liu & Qin Hui & Krishna Aragam & Zeyuan Wang & Brian Charest & Jennifer E. Huffman & Jacob M. Keaton & Todd L. Edwards & Serkalem Demissie & Luc Djousse & Juan P. Casas & J. Micha, 2022. "Genetic architecture of heart failure with preserved versus reduced ejection fraction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Vincent Michaud & Eulalie Lasseaux & David J. Green & Dave T. Gerrard & Claudio Plaisant & Tomas Fitzgerald & Ewan Birney & Benoît Arveiler & Graeme C. Black & Panagiotis I. Sergouniotis, 2022. "The contribution of common regulatory and protein-coding TYR variants to the genetic architecture of albinism," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Natalie DeForest & Yuqi Wang & Zhiyi Zhu & Jacqueline S. Dron & Ryan Koesterer & Pradeep Natarajan & Jason Flannick & Tiffany Amariuta & Gina M. Peloso & Amit R. Majithia, 2024. "Genome-wide discovery and integrative genomic characterization of insulin resistance loci using serum triglycerides to HDL-cholesterol ratio as a proxy," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Dick Schijven & Sourena Soheili-Nezhad & Simon E. Fisher & Clyde Francks, 2024. "Exome-wide analysis implicates rare protein-altering variants in human handedness," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Lili Liu & Atlas Khan & Elena Sanchez-Rodriguez & Francesca Zanoni & Yifu Li & Nicholas Steers & Olivia Balderes & Junying Zhang & Priya Krithivasan & Robert A. LeDesma & Clara Fischman & Scott J. Heb, 2022. "Genetic regulation of serum IgA levels and susceptibility to common immune, infectious, kidney, and cardio-metabolic traits," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. Sylvia Hartmann & Summaira Yasmeen & Benjamin M. Jacobs & Spiros Denaxas & Munir Pirmohamed & Eric R. Gamazon & Mark J. Caulfield & Harry Hemingway & Maik Pietzner & Claudia Langenberg, 2023. "ADRA2A and IRX1 are putative risk genes for Raynaud’s phenomenon," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Mit Shah & Marco H. A. Inácio & Chang Lu & Pierre-Raphaël Schiratti & Sean L. Zheng & Adam Clement & Antonio Marvao & Wenjia Bai & Andrew P. King & James S. Ware & Martin R. Wilkins & Johanna Mielke &, 2023. "Environmental and genetic predictors of human cardiovascular ageing," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Mathias Seviiri & Matthew H. Law & Jue-Sheng Ong & Puya Gharahkhani & Pierre Fontanillas & Catherine M. Olsen & David C. Whiteman & Stuart MacGregor, 2022. "A multi-phenotype analysis reveals 19 susceptibility loci for basal cell carcinoma and 15 for squamous cell carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Zhaotong Lin & Wei Pan, 2024. "A robust cis-Mendelian randomization method with application to drug target discovery," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Zhening Liu & Hangkai Huang & Jiarong Xie & Yingying Xu & Chengfu Xu, 2024. "Circulating fatty acids and risk of hepatocellular carcinoma and chronic liver disease mortality in the UK Biobank," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Junqing Xie & Shuo Feng & Xintong Li & Ester Gea-Mallorquí & Albert Prats-Uribe & Dani Prieto-Alhambra, 2022. "Comparative effectiveness of the BNT162b2 and ChAdOx1 vaccines against Covid-19 in people over 50," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Rongtao Jiang & Stephanie Noble & Matthew Rosenblatt & Wei Dai & Jean Ye & Shu Liu & Shile Qi & Vince D. Calhoun & Jing Sui & Dustin Scheinost, 2024. "The brain structure, inflammatory, and genetic mechanisms mediate the association between physical frailty and depression," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Erik Schoenmakers & Federica Marelli & Helle F. Jørgensen & W. Edward Visser & Carla Moran & Stefan Groeneweg & Carolina Avalos & Sean J. Jurgens & Nichola Figg & Alison Finigan & Neha Wali & Maura Ag, 2023. "Selenoprotein deficiency disorder predisposes to aortic aneurysm formation," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. Harry D Green & Alistair Jones & Jonathan P Evans & Andrew R Wood & Robin N Beaumont & Jessica Tyrrell & Timothy M Frayling & Christopher Smith & Michael N Weedon, 2021. "A genome-wide association study identifies 5 loci associated with frozen shoulder and implicates diabetes as a causal risk factor," PLOS Genetics, Public Library of Science, vol. 17(6), pages 1-13, June.
    16. Zhen Qiao & Julia Sidorenko & Joana A. Revez & Angli Xue & Xueling Lu & Katri Pärna & Harold Snieder & Peter M. Visscher & Naomi R. Wray & Loic Yengo, 2023. "Estimation and implications of the genetic architecture of fasting and non-fasting blood glucose," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Xiaoyi Raymond Gao & Marion Chiariglione & Alexander J. Arch, 2022. "Whole-exome sequencing study identifies rare variants and genes associated with intraocular pressure and glaucoma," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Romain Fournier & Zoi Tsangalidou & David Reich & Pier Francesco Palamara, 2023. "Haplotype-based inference of recent effective population size in modern and ancient DNA samples," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Nicole Deflaux & Margaret Sunitha Selvaraj & Henry Robert Condon & Kelsey Mayo & Sara Haidermota & Melissa A. Basford & Chris Lunt & Anthony A. Philippakis & Dan M. Roden & Joshua C. Denny & Anjene Mu, 2023. "Demonstrating paths for unlocking the value of cloud genomics through cross cohort analysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. George B. Busby & Scott Kulm & Alessandro Bolli & Jen Kintzle & Paolo Di Domenico & Giordano Bottà, 2023. "Ancestry-specific polygenic risk scores are risk enhancers for clinical cardiovascular disease assessments," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1009431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.