IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1007908.html
   My bibliography  Save this article

Estimating recent migration and population-size surfaces

Author

Listed:
  • Hussein Al-Asadi
  • Desislava Petkova
  • Matthew Stephens
  • John Novembre

Abstract

In many species a fundamental feature of genetic diversity is that genetic similarity decays with geographic distance; however, this relationship is often complex, and may vary across space and time. Methods to uncover and visualize such relationships have widespread use for analyses in molecular ecology, conservation genetics, evolutionary genetics, and human genetics. While several frameworks exist, a promising approach is to infer maps of how migration rates vary across geographic space. Such maps could, in principle, be estimated across time to reveal the full complexity of population histories. Here, we take a step in this direction: we present a method to infer maps of population sizes and migration rates associated with different time periods from a matrix of genetic similarity between every pair of individuals. Specifically, genetic similarity is measured by counting the number of long segments of haplotype sharing (also known as identity-by-descent tracts). By varying the length of these segments we obtain parameter estimates associated with different time periods. Using simulations, we show that the method can reveal time-varying migration rates and population sizes, including changes that are not detectable when using a similar method that ignores haplotypic structure. We apply the method to a dataset of contemporary European individuals (POPRES), and provide an integrated analysis of recent population structure and growth over the last ∼3,000 years in Europe.Author summary: We introduce a novel statistical method to infer migration rates and population sizes across space in recent time periods. Our approach builds upon the previously developed EEMS method, which infers effective migration rates under a dense lattice. Similarly, we infer demographic parameters under a lattice and use a (Voronoi) prior to regularize parameters of the model. However, our method differs from EEMS in a few key respects. First, we use the coalescent model parameterized by migration rates and population sizes while EEMS uses a resistance model. As another key difference, our method uses haplotype data while EEMS uses the average genetic distance. A consequence of using haplotype data is that our method can separately estimate migration rates and population sizes, which in essence is done by using a recombination rate map to calibrate the decay of haplotypes over time. An additional useful feature of haplotype data is that, by varying the lengths analyzed, we can infer demography associated with different recent time periods. We call our method MAPS for estimating Migration And Population-size Surfaces. To illustrate MAPS on real data, we analyze a genome-wide SNP dataset on 2224 individuals of European ancestry.

Suggested Citation

  • Hussein Al-Asadi & Desislava Petkova & Matthew Stephens & John Novembre, 2019. "Estimating recent migration and population-size surfaces," PLOS Genetics, Public Library of Science, vol. 15(1), pages 1-21, January.
  • Handle: RePEc:plo:pgen00:1007908
    DOI: 10.1371/journal.pgen.1007908
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007908
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1007908&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1007908?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Heng Li & Richard Durbin, 2011. "Inference of human population history from individual whole-genome sequences," Nature, Nature, vol. 475(7357), pages 493-496, July.
    2. Gideon S Bradburd & Peter L Ralph & Graham M Coop, 2016. "A Spatial Framework for Understanding Population Structure and Admixture," PLOS Genetics, Public Library of Science, vol. 12(1), pages 1-38, January.
    3. Daniel John Lawson & Garrett Hellenthal & Simon Myers & Daniel Falush, 2012. "Inference of Population Structure using Dense Haplotype Data," PLOS Genetics, Public Library of Science, vol. 8(1), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gideon S Bradburd & Peter L Ralph & Graham M Coop, 2016. "A Spatial Framework for Understanding Population Structure and Admixture," PLOS Genetics, Public Library of Science, vol. 12(1), pages 1-38, January.
    2. Steinrücken, Matthias & Paul, Joshua S. & Song, Yun S., 2013. "A sequentially Markov conditional sampling distribution for structured populations with migration and recombination," Theoretical Population Biology, Elsevier, vol. 87(C), pages 51-61.
    3. Jerome Kelleher & Alison M Etheridge & Gilean McVean, 2016. "Efficient Coalescent Simulation and Genealogical Analysis for Large Sample Sizes," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-22, May.
    4. Gyaneshwer Chaubey & Anurag Kadian & Saroj Bala & Vadlamudi Raghavendra Rao, 2015. "Genetic Affinity of the Bhil, Kol and Gond Mentioned in Epic Ramayana," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-11, June.
    5. Juraj Bergman & Rasmus Ø. Pedersen & Erick J. Lundgren & Rhys T. Lemoine & Sophie Monsarrat & Elena A. Pearce & Mikkel H. Schierup & Jens-Christian Svenning, 2023. "Worldwide Late Pleistocene and Early Holocene population declines in extant megafauna are associated with Homo sapiens expansion rather than climate change," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Per Unneberg & Mårten Larsson & Anna Olsson & Ola Wallerman & Anna Petri & Ignas Bunikis & Olga Vinnere Pettersson & Chiara Papetti & Astthor Gislason & Henrik Glenner & Joan E. Cartes & Leocadio Blan, 2024. "Ecological genomics in the Northern krill uncovers loci for local adaptation across ocean basins," Nature Communications, Nature, vol. 15(1), pages 1-29, December.
    7. Ya-Mei Ding & Xiao-Xu Pang & Yu Cao & Wei-Ping Zhang & Susanne S. Renner & Da-Yong Zhang & Wei-Ning Bai, 2023. "Genome structure-based Juglandaceae phylogenies contradict alignment-based phylogenies and substitution rates vary with DNA repair genes," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Romain Fournier & Zoi Tsangalidou & David Reich & Pier Francesco Palamara, 2023. "Haplotype-based inference of recent effective population size in modern and ancient DNA samples," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Matthieu Bouaziz & Caroline Paccard & Mickael Guedj & Christophe Ambroise, 2012. "SHIPS: Spectral Hierarchical Clustering for the Inference of Population Structure in Genetic Studies," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-17, October.
    10. Elisa Bellucci & Andrea Benazzo & Chunming Xu & Elena Bitocchi & Monica Rodriguez & Saleh Alseekh & Valerio Di Vittori & Tania Gioia & Kerstin Neumann & Gaia Cortinovis & Giulia Frascarelli & Ester Mu, 2023. "Selection and adaptive introgression guided the complex evolutionary history of the European common bean," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Melissa J Hubisz & Amy L Williams & Adam Siepel, 2020. "Mapping gene flow between ancient hominins through demography-aware inference of the ancestral recombination graph," PLOS Genetics, Public Library of Science, vol. 16(8), pages 1-24, August.
    12. Barton, N.H. & Etheridge, A.M. & Kelleher, J. & Véber, A., 2013. "Inference in two dimensions: Allele frequencies versus lengths of shared sequence blocks," Theoretical Population Biology, Elsevier, vol. 87(C), pages 105-119.
    13. James A Watson & Aimee R Taylor & Elizabeth A Ashley & Arjen Dondorp & Caroline O Buckee & Nicholas J White & Chris C Holmes, 2020. "A cautionary note on the use of unsupervised machine learning algorithms to characterise malaria parasite population structure from genetic distance matrices," PLOS Genetics, Public Library of Science, vol. 16(10), pages 1-23, October.
    14. Peña-Malavera Andrea & Bruno Cecilia & Fernandez Elmer & Balzarini Monica, 2014. "Comparison of algorithms to infer genetic population structure from unlinked molecular markers," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(4), pages 391-402, August.
    15. Guangping Huang & Lingyun Song & Xin Du & Xin Huang & Fuwen Wei, 2023. "Evolutionary genomics of camouflage innovation in the orchid mantis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Legried, Brandon & Terhorst, Jonathan, 2022. "Rates of convergence in the two-island and isolation-with-migration models," Theoretical Population Biology, Elsevier, vol. 147(C), pages 16-27.
    17. Jörn Bethune & April Kleppe & Søren Besenbacher, 2022. "A method to build extended sequence context models of point mutations and indels," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Wilton, Peter R. & Baduel, Pierre & Landon, Matthieu M. & Wakeley, John, 2017. "Population structure and coalescence in pedigrees: Comparisons to the structured coalescent and a framework for inference," Theoretical Population Biology, Elsevier, vol. 115(C), pages 1-12.
    19. Hobolth, Asger & Jensen, Jens Ledet, 2014. "Markovian approximation to the finite loci coalescent with recombination along multiple sequences," Theoretical Population Biology, Elsevier, vol. 98(C), pages 48-58.
    20. Mateus H. Gouveia & Amy R. Bentley & Thiago P. Leal & Eduardo Tarazona-Santos & Carlos D. Bustamante & Adebowale A. Adeyemo & Charles N. Rotimi & Daniel Shriner, 2023. "Unappreciated subcontinental admixture in Europeans and European Americans and implications for genetic epidemiology studies," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1007908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.